AoPS Community

Spain Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c3997
by Shu

Day 1

1 Each pair of vertices of a regular 67 -gon is joined by a line segment. Suppose n of these segments are selected, and each of them is painted one of ten available colors. Find the minimum possible value of n for which, regardless of which n segments were selected and how they were painted, there will always be a vertex of the polygon that belongs to seven segments of the same color.

2 Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}} \geq \frac{5}{2}
$$

and determine when equality holds.
3 Let A, B, C, D be four points in space not all lying on the same plane. The segments $A B$, $B C, C D$, and $D A$ are tangent to the same sphere. Prove that their four points of tangency are coplanar.

Day 2

1 In triangle $A B C, \angle B=2 \angle C$ and $\angle A>90^{\circ}$. Let D be the point on the line $A B$ such that $C D$ is perpendicular to $A C$, and let M be the midpoint of $B C$. Prove that $\angle A M B=\angle D M C$.

2 Each rational number is painted either white or red. Call such a coloring of the rationals sanferminera if for any distinct rationals numbers x and y satisfying one of the following three conditions: $-x y=1$,
$-x+y=0$,
$-x+y=1$, we have x and y painted different colors. How many sanferminera colorings are there?

3 The sequence $S_{0}, S_{1}, S_{2}, \ldots$ is defined by- $S_{n}=1$ for $0 \leq n \leq 2011$, and
$-S_{n+2012}=S_{n+2011}+S_{n}$ for $n \geq 0$. Prove that $S_{2011 a}-S_{a}$ is a multiple of 2011 for all nonnegative integers a.

