AoPS Community

Spain Mathematical Olympiad 2012

www.artofproblemsolving.com/community/c3998
by WakeUp

Day 1

1 Determine if the number $\lambda_{n}=\sqrt{3 n^{2}+2 n+2}$ is irrational for all non-negative integers n.
2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
(x-2) f(y)+f(y+2 f(x))=f(x+y f(x))
$$

for all $x, y \in \mathbb{R}$.
$3 \quad$ Let x and n be integers such that $1 \leq x \leq n$. We have $x+1$ separate boxes and $n-x$ identical balls. Define $f(n, x)$ as the number of ways that the $n-x$ balls can be distributed into the $x+1$ boxes. Let p be a prime number. Find the integers n greater than 1 such that the prime number p is a divisor of $f(n, x)$ for all $x \in\{1,2, \ldots, n-1\}$.

Day 2

$1 \quad$ Find all positive integers n and k such that $(n+1)^{n}=2 n^{k}+3 n+1$.
2 A sequence $\left(a_{n}\right)_{n \geq 1}$ of integers is defined by the recurrence

$$
a_{1}=1, a_{2}=5, a_{n}=\frac{a_{n-1}^{2}+4}{a_{n-2}} \text { for } n \geq 2 .
$$

Prove that all terms of the sequence are integers and find an explicit formula for a_{n}.
3 Let $A B C$ be an acute-angled triangle. Let ω be the inscribed circle with centre I, Ω be the circumscribed circle with centre O and M be the midpoint of the altitude $A H$ where H lies on $B C$. The circle ω be tangent to the side $B C$ at the point D. The line $M D$ cuts ω at a second point P and the perpendicular from I to $M D$ cuts $B C$ at N. The lines $N R$ and $N S$ are tangent to the circle Ω at R and S respectively. Prove that the points R, P, D and S lie on the same circle.

