

AoPS Community

Spain Mathematical Olympiad 2012

www.artofproblemsolving.com/community/c3998 by WakeUp

Day 1

1	Determine if the number $\lambda_n = \sqrt{3n^2 + 2n + 2}$ is irrational for all non-negative integers n .
2	Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that
	(x-2)f(y) + f(y+2f(x)) = f(x+yf(x))
	for all $x, y \in \mathbb{R}$.
3	Let x and n be integers such that $1 \le x \le n$. We have $x + 1$ separate boxes and $n - x$ identical balls. Define $f(n, x)$ as the number of ways that the $n - x$ balls can be distributed into the $x + 1$ boxes. Let p be a prime number. Find the integers n greater than 1 such that the prime number p is a divisor of $f(n, x)$ for all $x \in \{1, 2,, n - 1\}$.
Day 2	2
1	Find all positive integers n and k such that $(n + 1)^n = 2n^k + 3n + 1$.
2	A sequence $(a_n)_{n\geq 1}$ of integers is defined by the recurrence
	$z^2 + 4$

$$a_1 = 1, \ a_2 = 5, \ a_n = \frac{a_{n-1}^2 + 4}{a_{n-2}} \text{ for } n \ge 2.$$

Prove that all terms of the sequence are integers and find an explicit formula for a_n .

3 Let *ABC* be an acute-angled triangle. Let ω be the inscribed circle with centre *I*, Ω be the circumscribed circle with centre *O* and *M* be the midpoint of the altitude *AH* where *H* lies on *BC*. The circle ω be tangent to the side *BC* at the point *D*. The line *MD* cuts ω at a second point *P* and the perpendicular from *I* to *MD* cuts *BC* at *N*. The lines *NR* and *NS* are tangent to the circle Ω at *R* and *S* respectively. Prove that the points *R*, *P*, *D* and *S* lie on the same circle.

Art of Problem Solving is an ACS WASC Accredited School.