Art of Problem Solving

AoPS Community

Spain Mathematical Olympiad 2014

www.artofproblemsolving.com/community/c3999
by codyj

Day 1

1 Is it possible to place the numbers $0,1,2, \ldots, 9$ on a circle so that the sum of any three consecutive numbers is a) 13, b) 14 , c) 15 ?

2 Given the rational numbers r, q, and n, such that $\frac{1}{r+q n}+\frac{1}{q+r n}=\frac{1}{r+q}$, prove that $\sqrt{\frac{n-3}{n+1}}$ is a rational number.
$3 \quad$ Let B and C be two fixed points on a circle centered at O that are not diametrically opposed. Let A be a variable point on the circle distinct from B and C and not belonging to the perpendicular bisector of $B C$. Let H be the orthocenter of $\triangle A B C$, and M and N be the midpoints of the segments $B C$ and $A H$, respectively. The line $A M$ intersects the circle again at D, and finally, $N M$ and $O D$ intersect at P. Determine the locus of points P as A moves around the circle.

Day 2

1 Let $\left(x_{n}\right)$ be a sequence of positive integers defined by $x_{1}=2$ and $x_{n+1}=2 x_{n}^{3}+x_{n}$ for all integers $n \geq 1$. Determine the largest power of 5 that divides $x_{2014}^{2}+1$.

2 Let M be the set of all integers in the form of $a^{2}+13 b^{2}$, where a and b are distinct itnegers.
i) Prove that the product of any two elements of M is also an element of M.
ii) Determine, reasonably, if there exist infinite pairs of integers (x, y) so that $x+y \notin M$ but $x^{13}+y^{13} \in M$.

360 points are on the interior of a unit circle (a circle with radius 1). Show that there exists a point V on the circumference of the circle such that the sum of the distances from V to the 60 points is less than or equal to 80 .

