Art of Problem Solving

AoPS Community

IMO Longlists 1972

www.artofproblemsolving.com/community/c4005
by Goutham, K81o7, orl, srulikbd, brian_gold, ehsan2004, Amir Hossein

1 Find all integer solutions of the equation

$$
1+x+x^{2}+x^{3}+x^{4}=y^{4} .
$$

2 Find all real values of the parameter a for which the system of equations

$$
\begin{aligned}
& x^{4}=y z-x^{2}+a, \\
& y^{4}=z x-y^{2}+a, \\
& z^{4}=x y-z^{2}+a,
\end{aligned}
$$

has at most one real solution.
3 On a line a set of segments is given of total length less than n. Prove that every set of n points of the line can be translated in some direction along the line for a distance smaller than $\frac{n}{2}$ so that none of the points remain on the segments.

4 You have a triangle, $A B C$. Draw in the internal angle trisectors. Let the two trisectors closest to $A B$ intersect at D, the two trisectors closest to $B C$ intersect at E, and the two closest to $A C$ at F. Prove that $D E F$ is equilateral.
$5 \quad$ Given a pyramid whose base is an n-gon inscribable in a circle, let H be the projection of the top vertex of the pyramid to its base. Prove that the projections of H to the lateral edges of the pyramid lie on a circle.

6 Prove the inequality

$$
(n+1) \cos \frac{\pi}{n+1}-n \cos \frac{\pi}{n}>1
$$

for all natural numbers $n \geq 2$.
$7 \quad f$ and g are real-valued functions defined on the real line. For all x and $y, f(x+y)+f(x-y)=$ $2 f(x) g(y)$. f is not identically zero and $|f(x)| \leq 1$ for all x. Prove that $|g(x)| \leq 1$ for all x.

8 We are given $3 n$ points $A_{1}, A_{2}, \ldots, A_{3 n}$ in the plane, no three of them collinear. Prove that one can construct n disjoint triangles with vertices at the points A_{i}.

AoPS Community

9 Given natural numbers k and $n, k \leq n, n \geq 3$, find the set of all values in the interval $(0, \pi)$ that the $k^{\text {th }}$-largest among the interior angles of a convex n-gon can take.

10 Given five points in the plane, no three of which are collinear, prove that there can be found at least two obtuse-angled triangles with vertices at the given points. Construct an example in which there are exactly two such triangles.

11 The least number is m and the greatest number is M among $a_{1}, a_{2}, \ldots, a_{n}$ satisfying $a_{1}+a_{2}+$ $\ldots+a_{n}=0$. Prove that

$$
a_{1}^{2}+\cdots+a_{n}^{2} \leq-n m M
$$

12 A circle $k=(S, r)$ is given and a hexagon $A A^{\prime} B B^{\prime} C C^{\prime}$ inscribed in it. The lengths of sides of the hexagon satisfy $A A^{\prime}=A^{\prime} B, B B^{\prime}=B^{\prime} C, C C^{\prime}=C^{\prime} A$. Prove that the area P of triangle $A B C$ is not greater than the area P^{\prime} of triangle $A^{\prime} B^{\prime} C^{\prime}$. When does $P=P^{\prime}$ hold?

13 Given a sphere K, determine the set of all points A that are vertices of some parallelograms $A B C D$ that satisfy $A C \leq B D$ and whose entire diagonal $B D$ is contained in K.

14 (a) A plane π passes through the vertex O of the regular tetrahedron $O P Q R$. We define p, q, r to be the signed distances of P, Q, R from π measured along a directed normal to π. Prove that

$$
p^{2}+q^{2}+r^{2}+(q-r)^{2}+(r-p)^{2}+(p-q)^{2}=2 a^{2},
$$

where a is the length of an edge of a tetrahedron. (b) Given four parallel planes not all of which are coincident, show that a regular tetrahedron exists with a vertex on each plane.

Note: Part (b) is IMO 1972 Problem 6 (http://www. artof problemsolving. com/Forum/viewtopic. php?f=49
\&t=60825
\&start=0)

15 Prove that $(2 m)!(2 n)$! is a multiple of $m!n!(m+n)!$ for any non-negative integers m and n.
16 Consider the set S of all the different odd positive integers that are not multiples of 5 and that are less than $30 m, m$ being a positive integer. What is the smallest integer k such that in any subset of k integers from S there must be two integers one of which divides the other? Prove your result.

17 A solid right circular cylinder with height h and base-radius r has a solid hemisphere of radius r resting upon it. The center of the hemisphere O is on the axis of the cylinder. Let P be any point on the surface of the hemisphere and Q the point on the base circle of the cylinder that is furthest from P (measuring along the surface of the combined solid). A string is stretched over the surface from P to Q so as to be as short as possible. Show that if the string is not in a plane, the straight line $P O$ when produced cuts the curved surface of the cylinder.

AoPS Community

18 We have p players participating in a tournament, each player playing against every other player exactly once. A point is scored for each victory, and there are no draws. A sequence of nonnegative integers $s_{1} \leq s_{2} \leq s_{3} \leq \cdots \leq s_{p}$ is given. Show that it is possible for this sequence to be a set of final scores of the players in the tournament if and only if

$$
\begin{gathered}
\text { (i) } \sum_{i=1}^{p} s_{i}=\frac{1}{2} p(p-1) \\
\text { and } \\
\text { (ii) for all } k<p, \sum_{i=1}^{k} s_{i} \geq \frac{1}{2} k(k-1) .
\end{gathered}
$$

19 Let S be a subset of the real numbers with the following
properties: (i) If $x \in S$ and $y \in S$, then $x-y \in S$; (ii) If $x \in S$ and $y \in S$, then $x y \in S$; (iii) S contains an exceptional number x^{\prime} such that there is no number y in S satisfying $x^{\prime} y+x^{\prime}+y=0$; (iv) If $x \in S$ and $x \neq x^{\prime}$, there is a number y in S such that $x y+x+y=0$.

Show that (a) S has more than one number in it; (b) $x^{\prime} \neq-1$ leads to a contradiction; (c) $x \in S$ and $x \neq 0$ implies $1 / x \in S$.

20 Let n_{1}, n_{2} be positive integers. Consider in a plane E two disjoint sets of points M_{1} and M_{2} consisting of $2 n_{1}$ and $2 n_{2}$ points, respectively, and such that no three points of the union $M_{1} \cup$ M_{2} are collinear. Prove that there exists a straightline g with the following property: Each of the two half-planes determined by g on E (g not being included in either) contains exactly half of the points of M_{1} and exactly half of the points of M_{2}.

21 Prove the following assertion: The four altitudes of a tetrahedron $A B C D$ intersect in a point if and only if

$$
A B^{2}+C D^{2}=B C^{2}+A D^{2}=C A^{2}+B D^{2} .
$$

22 Show that for any $n \not \equiv 0(\bmod 10)$ there exists a multiple of n not containing the digit 0 in its decimal expansion.

23 Does there exist a $2 n$-digit number $\overline{a_{2 n} a_{2 n-1} \cdots a_{1}}$ (for an arbitrary n) for which the following equality holds:

$$
\overline{a_{2 n} \cdots a_{1}}=\left(\overline{a_{n} \cdots a_{1}}\right)^{2} ?
$$

24 The diagonals of a convex 18-gon are colored in 5 different colors, each color appearing on an equal number of diagonals. The diagonals of one color are numbered $1,2, \cdots$. One randomly chooses one-fifth of all the diagonals. Find the number of possibilities for which among the
chosen diagonals there exist exactly n pairs of diagonals of the same color and with fixed indices i, j.

25 We consider n real variables $x_{i}(1 \leq i \leq n)$, where n is an integer and $n \geq 2$. The product of these variables will be denoted by p, their sum by s, and the sum of their squares by S. Furthermore, let α be a positive constant. We now study the inequality $p s \leq S \alpha$. Prove that it holds for every n-tuple $\left(x_{i}\right)$ if and only if $\alpha=\frac{n+1}{2}$

26 Find all positive real solutions to:

$$
\begin{aligned}
&\left(x_{1}^{2}-x_{3} x_{5}\right)\left(x_{2}^{2}-x_{3} x_{5}\right) \leq 0 \\
&\left(x_{2}^{2}-x_{4} x_{1}\right)\left(x_{3}^{2}-x_{4} x_{1}\right) \leq 0 \\
&\left(x_{3}^{2}-x_{5} x_{2}\right)\left(x_{4}^{2}-x_{5} x_{2}\right) \leq 0 \\
&\left(x_{4}^{2}-x_{1} x_{3}\right)\left(x_{5}^{2}-x_{1} x_{3}\right) \leq 0 \\
&\left(x_{5}^{2}-x_{2} x_{4}\right)\left(x_{1}^{2}-x_{2} x_{4}\right) \leq 0
\end{aligned}
$$

27 Given $n>4$, prove that every cyclic quadrilateral can be dissected into n cyclic quadrilaterals.

28 The lengths of the sides of a rectangle are given to be odd integers. Prove that there does not exist a point within that rectangle that has integer distances to each of its four vertices.

29 Let A, B, C be points on the sides $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$ of a triangle $A_{1} B_{1} C_{1}$ such that $A_{1} A, B_{1} B, C_{1} C$ are the bisectors of angles of the triangle. We have that $A C=B C$ and $A_{1} C_{1} \neq B_{1} C_{1}$. (a) Prove that C_{1} lies on the circumcircle of the triangle $A B C$. (b) Suppose that $\angle B A C_{1}=\frac{\pi}{6}$; find the form of triangle $A B C$.

30 Consider a sequence of circles $K_{1}, K_{2}, K_{3}, K_{4}, \ldots$ of radii $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$, respectively, situated inside a triangle $A B C$. The circle K_{1} is tangent to $A B$ and $A C ; K_{2}$ is tangent to $K_{1}, B A$, and $B C$; K_{3} is tangent to $K_{2}, C A$, and $C B ; K_{4}$ is tangent to $K_{3}, A B$, and $A C$; etc.
(a) Prove the relation

$$
r_{1} \cot \frac{1}{2} A+2 \sqrt{r_{1} r_{2}}+r_{2} \cot \frac{1}{2} B=r\left(\cot \frac{1}{2} A+\cot \frac{1}{2} B\right)
$$

where r is the radius of the incircle of the triangle $A B C$. Deduce the existence of $a t_{1}$ such that

$$
r_{1}=r \cot \frac{1}{2} B \cot \frac{1}{2} C \sin ^{2} t_{1}
$$

(b) Prove that the sequence of circles K_{1}, K_{2}, \ldots is periodic.

31 Find values of $n \in \mathbb{N}$ for which the fraction $\frac{3^{n}-2}{2^{n}-3}$ is reducible.
32 If $n_{1}, n_{2}, \cdots, n_{k}$ are natural numbers and $n_{1}+n_{2}+\cdots+n_{k}=n$, show that

$$
\max \left(n_{1} n_{2} \cdots n_{k}\right)=(t+1)^{r} t^{k-r}
$$

where $t=\left[\frac{n}{k}\right]$ and r is the remainder of n upon division by k; i.e., $n=t k+r, 0 \leq r \leq k-1$.
33 A rectangle $A B C D$ is given whose sides have lengths 3 and $2 n$, where n is a natural number. Denote by $U(n)$ the number of ways in which one can cut the rectangle into rectangles of side lengths 1 and 2. (a) Prove that

$$
U(n+1)+U(n-1)=4 U(n)
$$

(b) Prove that

$$
U(n)=\frac{1}{2 \sqrt{3}}\left[(\sqrt{3}+1)(2+\sqrt{3})^{n}+(\sqrt{3}-1)(2-\sqrt{3})^{n}\right] .
$$

34 If p is a prime number greater than 2 and a, b, c integers not divisible by p, prove that the equation

$$
a x^{2}+b y^{2}=p z+c
$$

has an integer solution.
35 (a) Prove that for $a, b, c, d \in \mathbb{R}, m \in[1,+\infty)$ with $a m+b=-c m+d=m$,

$$
\begin{gathered}
\text { (i) } \sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}+\sqrt{(a-c)^{2}+(b-d)^{2}} \geq \frac{4 m^{2}}{1+m^{2}} \text {, and } \\
(\text { ii }) 2 \leq \frac{4 m^{2}}{1+m^{2}}<4
\end{gathered}
$$

(b) Express a, b, c, d as functions of m so that there is equality in (i).

36 A finite number of parallel segments in the plane are given with the property that for any three of the segments there is a line intersecting each of them. Prove that there exists a line that intersects all the given segments.

37 On a chessboard (8×8 squares with sides of length 1) two diagonally opposite corner squares are taken away. Can the board now be covered with nonoverlapping rectangles with sides of lengths 1 and 2 ?

38 Congruent rectangles with sides $m(\mathrm{~cm})$ and $n(\mathrm{~cm})$ are given (m, n positive integers). Characterize the rectangles that can be constructed from these rectangles (in the fashion of a jigsaw puzzle). (The number of rectangles is unbounded.)

AoPS Community

39 How many tangents to the curve $y=x^{3}-3 x\left(y=x^{3}+p x\right)$ can be drawn from different points in the plane?

40 Prove the inequalities

$$
\frac{u}{v} \leq \frac{\sin u}{\sin v} \leq \frac{\pi}{2} \times \frac{u}{v}, \text { for } 0 \leq u<v \leq \frac{\pi}{2}
$$

41 The ternary expansion $x=0.10101010 \cdots$ is given. Give the binary expansion of x. Alternatively, transform the binary expansion $y=0.110110110 \cdots$ into a ternary expansion.

42 The decimal number 13^{101} is given. It is instead written as a ternary number. What are the two last digits of this ternary number?

43 A fixed point A inside a circle is given. Consider all chords $X Y$ of the circle such that $\angle X A Y$ is a right angle, and for all such chords construct the point M symmetric to A with respect to $X Y$. Find the locus of points M.

44 Prove that from a set of ten distinct two-digit numbers, it is always possible to find two disjoint subsets whose members have the same sum.

45 Let $A B C D$ be a convex quadrilateral whose diagonals $A C$ and $B D$ intersect at point O. Let a line through O intersect segment $A B$ at M and segment $C D$ at N. Prove that the segment $M N$ is not longer than at least one of the segments $A C$ and $B D$.

46 Numbers $1,2, \cdots, 16$ are written in a 4×4 square matrix so that the sum of the numbers in every row, every column, and every diagonal is the same and furthermore that the numbers 1 and 16 lie in opposite corners. Prove that the sum of any two numbers symmetric with respect to the center of the square equals 17 .

