AoPS Community

Kazakhstan National Olympiad 2005

www.artofproblemsolving.com/community/c4039
by rightways, qwert159, birzhan

Day 1

1 Does there exist a solution in real numbers of the system of equations

$$
\left\{\begin{array}{l}
(x-y)(z-t)(z-x)(z-t)^{2}=A \\
(y-z)(t-x)(t-y)(x-z)^{2}=B \\
(x-z)(y-t)(z-t)(y-z)^{2}=C
\end{array}\right.
$$

when
a) $A=2, B=8, C=6$;
b) $A=2, B=6, C=8$?

2 Prove that

$$
a b+b c+c a \geq 2(a+b+c)
$$

where a, b, c are positive reals such that $a+b+c+2=a b c$.
3 Call a set of points in the plane good if any three points of the set are the vertices of an isosceles triangle or if they are collinear. Determine all a) 6-element good sets b) 7 -element good sets.

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying the condition
$f(f(x)+x+y)=2 x+f(y)$
for any real x and y.

Day 2

1 Solve equation

$$
2^{\frac{1}{2}-2|x|}=\left|\tan x+\frac{1}{2}\right|+\left|\tan x-\frac{1}{2}\right|
$$

2 The line parallel to side $A C$ of a right triangle $A B C\left(\angle C=90^{\circ}\right)$ intersects sides $A B$ and $B C$ at M and N, respectively, so that the $C N / B N=A C / B C=2$. Let O be the intersection point of the segments $A N$ and $C M$ and K be a point on the segment $O N$ such that $M O+O K=K N$. The perpendicular line to $A N$ at point K and the bisector of triangle $A B C$ of $\angle B$ meet at point T. Find the angle $\angle M T B$.

3 Exactly one number from the set $\{-1,0,1\}$ is written in each unit cell of a 2005×2005 table, so that the sum of all the entries is 0 . Prove that there exist two rows and two columns of the table, such that the sum of the four numbers written at the intersections of these rows and columns is equal to 0 .

4 Find all polynomials $P(x)$ with real coefficients such that for every positive integer n there exists a rational r with $P(r)=n$.

