Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2007

www.artofproblemsolving.com/community/c4040
by rightways

Day 1

1 Zeros of a fourth-degree polynomial $f(x)$ form an arithmetic progression. Prove that the zeros of $f^{\prime}(x)$ also form an arithmetic progression.

2 Let $A B C$ be an isosceles triangle with $A C=B C$ and I is the center of the inscribed circle. The point P lies on the circle circumscribed about the triangle $A I B$ and lies inside the triangle $A B C$. Straight lines passing through point P parallel to $C A$ and $C B$ intersect $A B$ at points D and E, respectively. The line through P which is parallel to $A B$ intersects $C A$ and $C B$ at points F and G, respectively. Prove that the lines $D F$ and $E G$ meet at the circumcircle of triangle $A B C$.

3 Solve in prime numbers the equation $p(p+1)+q(q+1)=r(r+1)$.
4 Several identical square sheets of paper are laid out on a rectangular table so that their sides are parallel to the edges of the table (sheets may overlap). Prove that you can stick a few pins in such a way that each sheet will be attached to the table exactly by one pin.

Day 2

1 Convex quadrilateral $A B C D$ with $A B$ not equal to $D C$ is inscribed in a circle. Let $A K D L$ and $C M B N$ be rhombs with same side of a. Prove that the points K, L, M, N lie on a circle.

2 Each cell of a 100×100 board is painted in one of 100 different colors so that there are exactly 100 cells of each color. Prove that there is a row or column in which there are at least 10 cells of different colors.

3 Let p be a prime such that $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$. Show that $(p-1)\left(p!+2^{n}\right)$ has at least three distinct prime divisors for each $n \in \mathbb{N}$.

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying the condition
$f(x f(y)+f(x))=2 f(x)+x y$
for any real x and y.

