Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2008

www.artofproblemsolving.com/community/c4041
by Erken

Day 1

1 Let F_{n} be a set of all possible connected figures, that consist of n unit cells. For each element f_{n} of this set, let $S\left(f_{n}\right)$ be the area of that minimal rectangle that covers f_{n} and each side of the rectangle is parallel to the corresponding side of the cell. Find $\max \left(S\left(f_{n}\right)\right)$, where $f_{n} \in F_{n}$?

Remark: Two cells are called connected if they have a common edge.
2 Suppose that B_{1} is the midpoint of the arc $A C$, containing B, in the circumcircle of $\triangle A B C$, and let I_{b} be the B-excircle's center. Assume that the external angle bisector of $\angle A B C$ intersects $A C$ at B_{2}. Prove that $B_{2} I$ is perpendicular to $B_{1} I_{B}$, where I is the incenter of $\triangle A B C$.

3 Let $f(x, y, z)$ be the polynomial with integer coefficients. Suppose that for all reals x, y, z the following equation holds:

$$
f(x, y, z)=-f(x, z, y)=-f(y, x, z)=-f(z, y, x)
$$

Prove that if $a, b, c \in \mathbb{Z}$ then $f(a, b, c)$ takes an even value

Day 2

1 Find all integer solutions $\left(a_{1}, a_{2}, \ldots, a_{2008}\right)$ of the following equation:
$\left(2008-a_{1}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\cdots+\left(a_{2007}-a_{2008}\right)^{2}+a_{2008}^{2}=2008$
2 Let $\triangle A B C$ be a triangle and let K be some point on the side $A B$, so that the tangent line from K to the incircle of $\triangle A B C$ intersects the ray $A C$ at L. Assume that ω is tangent to sides $A B$ and $A C$, and to the circumcircle of $\triangle A K L$. Prove that ω is tangent to the circumcircle of $\triangle A B C$ as well.

3 Find the maximum number of planes in the space, such there are 6 points, that satisfy to the following conditions:
1.Each plane contains at least 4 of them
2.No four points are collinear.

