

AoPS Community

2008 Kazakhstan National Olympiad

Kazakhstan National Olympiad 2008

www.artofproblemsolving.com/community/c4041 by Erken

Day 1	
1	Let F_n be a set of all possible connected figures, that consist of n unit cells. For each element f_n of this set, let $S(f_n)$ be the area of that minimal rectangle that covers f_n and each side of the rectangle is parallel to the corresponding side of the cell. Find $max(S(f_n))$, where $f_n \in F_n$?
	Remark: Two cells are called connected if they have a common edge.
2	Suppose that B_1 is the midpoint of the arc AC , containing B , in the circumcircle of $\triangle ABC$, and let I_b be the B -excircle's center. Assume that the external angle bisector of $\angle ABC$ intersects AC at B_2 . Prove that B_2I is perpendicular to B_1I_B , where I is the incenter of $\triangle ABC$.
3	Let $f(x, y, z)$ be the polynomial with integer coefficients. Suppose that for all reals x, y, z the following equation holds:
	f(x, y, z) = -f(x, z, y) = -f(y, x, z) = -f(z, y, x)
	Prove that if $a, b, c \in \mathbb{Z}$ then $f(a, b, c)$ takes an even value

Day 2	
1	Find all integer solutions $(a_1, a_2, \dots, a_{2008})$ of the following equation: $(2008 - a_1)^2 + (a_1 - a_2)^2 + \dots + (a_{2007} - a_{2008})^2 + a_{2008}^2 = 2008$
2	Let $\triangle ABC$ be a triangle and let K be some point on the side AB , so that the tangent line from K to the incircle of $\triangle ABC$ intersects the ray AC at L . Assume that ω is tangent to sides AB and AC , and to the circumcircle of $\triangle AKL$. Prove that ω is tangent to the circumcircle of $\triangle ABC$ as well.
3	Find the maximum number of planes in the space, such there are 6 points, that satisfy to the following conditions: 1 .Each plane contains at least 4 of them 2 .No four points are collinear.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱