Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2009

www.artofproblemsolving.com/community/c4042
by Ovchinnikov Denis

Day 1

1 Let S_{n} be number of ordered sets of natural numbers $\left(a_{1} ; a_{2} ; \ldots ; a_{n}\right)$ for which $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots .+\frac{1}{a_{n}}=$

1. Determine
1) $S_{10} \bmod (2)$.
2) $S_{7} \bmod (2)$.
(1) is first problem in 10 grade, (2)- third in 9 grade.

2 Let in-circle of $A B C$ touch $A B, B C, A C$ in C_{1}, A_{1}, B_{1} respectively.
Let H-intersection point of altitudes in $A_{1} B_{1} C_{1}, I$ and O-be in-center and circumcenter of $A B C$ respectively.
Prove, that I, O, H lies on one line.
$3 \quad$ In chess tournament participates n participants ($n>1$). In tournament each of participants plays with each other exactly 1 game. For each game participant have 1 point if he wins game, 0,5 point if game is drow and 0 points if he lose game.
If after ending of tournament participant have at least 75 of maximum possible points he called winner of tournament.
Find maximum possible numbers of winners of tournament.
4 Let a, b, c, d-reals positive numbers. Prove inequality: $\frac{a^{2}+b^{2}+c^{2}}{a b+b c+c d}+\frac{b^{2}+c^{2}+d^{2}}{b c+c d+a d}+\frac{a^{2}+c^{2}+d^{2}}{a b+a d+c d}+\frac{a^{2}+b^{2}+d^{2}}{a b+a d+b c} \geq$ 4

5 Quadrilateral $A B C D$ inscribed in circle with center O. Let lines $A D$ and $B C$ intersects at M, lines $A B$ and $C D$ - at N, lines $A C$ and $B D$-at P, lines $O P$ and $M N$ at K.
Proved that $\angle A K P=\angle P K C$.
As I know, this problem was very short solution by polars, but in olympiad for this solution gives maximum 4 balls (in marking schemes written, that needs to prove all theorems about properties of polars)
$6 \quad$ Let $P(x)$ be polynomial with integer coefficients.
Prove, that if for any natural k holds equality: $\underbrace{P(P(\ldots P(0) \ldots))}_{n \text {-times }}=0$ then $P(0)=0$ or $P(P(0))=0$

Day 2

1 Prove that for any natural $n \geq 2$, the number $\underbrace{2^{2 \cdots \omega^{2}}}_{n \text { times }}-\underbrace{2^{2 \cdots 2}}_{n-1 \text { times }}$ is divisible by n.
I know, that it is a very old problem :blush: but it is a problem from olympiad.
2 In triangle $A B C A A_{1} ; B B_{1} ; C C_{1}$-altitudes. Let I_{1} and I_{2} be in-centers of triangles $A C_{1} B_{1}$ and $C A_{1} B_{1}$ respectively. Let in-circle of $A B C$ touch $A C$ in B_{2}.
Prove, that quadrilateral $I_{1} I_{2} B_{1} B_{2}$ inscribed in a circle.
3 In chess tournament participates n participants ($n>1$). In tournament each of participants plays with each other exactly 1 game. For each game participant have 1 point if he wins game, 0,5 point if game is drow and 0 points if he lose game.
If after ending of tournament participant have at least 75 of maximum possible points he called winner of tournament.
Find maximum possible numbers of winners of tournament.
4 Let $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}(n \geq 3 ; n \in \mathbb{N})$ be n real numbers. Prove the inequality

$$
\frac{a_{1}^{2}}{a_{2}}+\frac{a_{2}^{3}}{a_{3}^{2}}+\cdots+\frac{a_{n}^{n+1}}{a_{1}^{n}} \geq a_{1}+a_{2}+\cdots+a_{n}
$$

5 Quadrilateral $A B C D$ inscribed in circle with center O. Let lines $A D$ and $B C$ intersects at M, lines $A B$ and $C D$ - at N, lines $A C$ and $B D$-at P, lines $O P$ and $M N$ at K.
Proved that $\angle A K P=\angle P K C$.
As I know, this problem was very short solution by polars, but in olympiad for this solution gives maximum 4 balls (in marking schemes written, that needs to prove all theorems about properties of polars)

6 Is there exist four points on plane, such that distance between any two of them is integer odd number?

May be it is geometry or number theory or combinatoric, I don't know, so it here :blush:

