

AoPS Community

2009 Kazakhstan National Olympiad

Kazakhstan National Olympiad 2009

www.artofproblemsolving.com/community/c4042 by Ovchinnikov Denis

1	Let S_n be number of ordered sets of natural numbers $(a_1; a_2;; a_n)$ for which $\frac{1}{a_1} + \frac{1}{a_2} + + \frac{1}{a_n} = 1$. Determine 1) $S_{10}mod(2)$. 2) $S_7mod(2)$.
	(1) is first problem in 10 grade, (2)- third in 9 grade.
2	Let in-circle of ABC touch AB , BC , AC in C_1 , A_1 , B_1 respectively. Let H - intersection point of altitudes in $A_1B_1C_1$, I and O -be in-center and circumcenter of ABC respectively. Prove, that I, O, H lies on one line.
3	In chess tournament participates n participants ($n > 1$). In tournament each of participants plays with each other exactly 1 game. For each game participant have 1 point if he wins game $0, 5$ point if game is drow and 0 points if he lose game. If after ending of tournament participant have at least 75 of maximum possible points he called <i>winner of tournament</i> . Find maximum possible numbers of <i>winners of tournament</i> .
4	$\begin{array}{l} \text{Let } a,b,c,d \text{-reals positive numbers. Prove inequality: } \underbrace{\frac{a^2+b^2+c^2}{ab+bc+cd} + \frac{b^2+c^2+d^2}{bc+cd+ad} + \frac{a^2+c^2+d^2}{ab+ad+cd} + \frac{a^2+b^2+d^2}{ab+ad+bc} \geq 4 \end{array}$
5	Quadrilateral <i>ABCD</i> inscribed in circle with center <i>O</i> . Let lines <i>AD</i> and <i>BC</i> intersects at <i>M</i> lines <i>AB</i> and <i>CD</i> - at <i>N</i> , lines <i>AC</i> and <i>BD</i> -at <i>P</i> , lines <i>OP</i> and <i>MN</i> at <i>K</i> . Proved that $\angle AKP = \angle PKC$.
	As I know, this problem was very short solution by polars, but in olympiad for this solution gives maximum 4 balls (in marking schemes written, that needs to prove all theorems about properties of polars)
6	Let $P(x)$ be polynomial with integer coefficients. Prove, that if for any natural k holds equality: $\underbrace{P(P(P(0)))}_{n-times} = 0$ then $P(0) = 0$ or $P(P(0)) = 0$

AoPS Community

2009 Kazakhstan National Olympiad

1 Prove that for any natural $n \ge 2$, the number $\underbrace{2^{2^{\dots^2}}}_{n \text{ times}} - \underbrace{2^{2^{\dots^2}}}_{n-1 \text{ times}}$ is divisible by n.

I know, that it is a very old problem :blush: but it is a problem from olympiad.

- 2 In triangle $ABC AA_1; BB_1; CC_1$ -altitudes. Let I_1 and I_2 be in-centers of triangles AC_1B_1 and CA_1B_1 respectively. Let in-circle of ABC touch AC in B_2 . Prove, that quadrilateral $I_1I_2B_1B_2$ inscribed in a circle.
- 3 In chess tournament participates n participants (n > 1). In tournament each of participants plays with each other exactly 1 game. For each game participant have 1 point if he wins game, 0, 5 point if game is drow and 0 points if he lose game. If after ending of tournament participant have at least 75 of maximum possible points he called

winner of tournament.

Find maximum possible numbers of *winners of tournament*.

4 Let $0 < a_1 \le a_2 \le \dots \le a_n$ ($n \ge 3$; $n \in \mathbb{N}$) be n real numbers. Prove the inequality

$$\frac{a_1^2}{a_2} + \frac{a_2^3}{a_3^2} + \dots + \frac{a_n^{n+1}}{a_1^n} \ge a_1 + a_2 + \dots + a_n$$

5 Quadrilateral *ABCD* inscribed in circle with center *O*. Let lines *AD* and *BC* intersects at *M*, lines *AB* and *CD*- at *N*, lines *AC* and *BD* -at *P*, lines *OP* and *MN* at *K*. Proved that $\angle AKP = \angle PKC$.

As I know, this problem was very short solution by polars, but in olympiad for this solution gives maximum 4 balls (in marking schemes written, that needs to prove all theorems about properties of polars)

6 Is there exist four points on plane, such that distance between any two of them is integer odd number?

May be it is geometry or number theory or combinatoric, I don't know, so it here :blush:

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.