Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2010

www.artofproblemsolving.com/community/c4043
by Ovchinnikov Denis

Day 9

$1 \quad$ Triangle $A B C$ is given. Circle ω passes through B, touch $A C$ in D and intersect sides $A B$ and $B C$ at P and Q respectively. Line $P Q$ intersect $B D$ and $A C$ at M and N respectively. Prove that ω, circumcircle of $D M N$ and circle, touching $P Q$ in M and passes through B , intersects in one point.

2 Exactly $4 n$ numbers in set $A=\{1,2,3, \ldots, 6 n\}$ of natural numbers painted in red, all other in blue.
Proved that exist $3 n$ consecutive natural numbers from A, exactly $2 n$ of which numbers is red.

3 Positive real A is given. Find maximum value of M for which inequality
$\frac{1}{x}+\frac{1}{y}+\frac{A}{x+y} \geq \frac{M}{\sqrt{x y}}$
holds for all $x, y>0$
4 Let x - minimal root of equation $x^{2}-4 x+2=0$.
Find two first digits of number $\left\{x+x^{2}+\ldots .+x^{20}\right\}$ after 0 , where $\{a\}$ - fractional part of a.
5 Arbitrary triangle $A B C$ is given (with $A B<B C$). Let M - midpoint of $A C, N$ - midpoint of arc $A C$ of circumcircle $A B C$, which is contains point B. Let I - in-center of $A B C$. Proved, that $\angle I M A=\angle I N B$

6 Let numbers $1,2,3, \ldots, 2010$ stand in a row at random. Consider row, obtain by next rule:
For any number we sum it and it's number in a row (For example for row (2, 7, 4) we consider a row $(2+1 ; 7+2 ; 4+3)=(3 ; 9 ; 7)$);
Proved, that in resulting row we can found two equals numbers, or two numbers, which is differ by 2010

Day 10

1 Triangle $A B C$ is given. Consider ellipse Ω_{1}, passes through C with focuses in A and B. Similarly define ellipses Ω_{2}, Ω_{3} with focuses B, C and C, A respectively. Prove, that if all ellipses have common point D then A, B, C, D lies on the circle.
Ellipse with focuses X, Y, passes through Z-locus of point T, such that $X T+Y T=X Z+Y Z$

2010 Kazakhstan National Olympiad

2 On sides of convex quadrilateral $A B C D$ on external side constructed equilateral triangles $A B K, B C L, C D M, D A N$. Let P, Q - midpoints of $B L, A N$ respectively and X-circumcenter of $C M D$.
Prove, that $P Q$ perpendicular to $K X$
3 Call $A \in \mathbb{N}^{0}$ be numberofyear if all digits of A equals 0,1 or 2 (in decimal representation). Prove that exist infinity $N \in \mathbb{N}$, such that N can't presented as $A^{2}+B$ where $A \in \mathbb{N}^{0} ; B$ numberofyear.

4 It is given that for some $n \in \mathbb{N}$ there exists a natural number a, such that $a^{n-1} \equiv 1(\bmod n)$ and that for any prime divisor p of $n-1$ we have $a^{\frac{n-1}{p}} \not \equiv 1(\bmod n)$.
Prove that n is a prime.
5 Let $n \geq 2$ be an integer. Define $x_{i}=1$ or -1 for every $i=1,2,3, \cdots, n$.
Call an operation adhesion, if it changes the string $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ to $\left(x_{1} x_{2}, x_{2} x_{3}, \cdots, x_{n-1} x_{n}, x_{n} x_{1}\right)$

Find all integers $n \geq 2$ such that the string $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ changes to $(1,1, \cdots, 1)$ after finitely adhesion operations.

6 Let $A B C D$ be convex quadrilateral, such that exist M, N inside $A B C D$ for which $\angle N A D=$ $\angle M A B ; \angle N B C=\angle M B A ; \angle M C B=\angle N C D ; \angle N D A=\angle M D C$
Prove, that $S_{A B M}+S_{A B N}+S_{C D M}+S_{C D N}=S_{B C M}+S_{B C N}+S_{A D M}+S_{A D N}$, where $S_{X Y Z}$-area of triangle $X Y Z$

Day 11

1 It is given that for some $n \in \mathbb{N}$ there exists a natural number a, such that $a^{n-1} \equiv 1(\bmod n)$ and that for any prime divisor p of $n-1$ we have $a^{\frac{n-1}{p}} \not \equiv 1(\bmod n)$.
Prove that n is a prime.
2 Let $n \geq 2$ be an integer. Define $x_{i}=1$ or -1 for every $i=1,2,3, \cdots, n$.
Call an operation adhesion, if it changes the string $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ to $\left(x_{1} x_{2}, x_{2} x_{3}, \cdots, x_{n-1} x_{n}, x_{n} x_{1}\right)$

Find all integers $n \geq 2$ such that the string $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ changes to $(1,1, \cdots, 1)$ after finitely adhesion operations.

3 Let $A B C D$ be convex quadrilateral, such that exist M, N inside $A B C D$ for which $\angle N A D=$ $\angle M A B ; \angle N B C=\angle M B A ; \angle M C B=\angle N C D ; \angle N D A=\angle M D C$

Prove, that $S_{A B M}+S_{A B N}+S_{C D M}+S_{C D N}=S_{B C M}+S_{B C N}+S_{A D M}+S_{A D N}$, where $S_{X Y Z}$-area of triangle $X Y Z$
$4 \quad$ For $x ; y \geq 0$ prove the inequality:
$\sqrt{x^{2}-x+1} \sqrt{y^{2}-y+1}+\sqrt{x^{2}+x+1} \sqrt{y^{2}+y+1} \geq 2(x+y)$
5 Let O be the circumcircle of acute triangle $A B C, A D$-altitude of $A B C(D \in B C), A D \cap C O=E$, M-midpoint of $A E, F$-feet of perpendicular from C to $A O$.
Proved that point of intersection $O M$ and $B C$ lies on circumcircle of triangle $B O F$
6 Call $A \in \mathbb{N}^{0}$ be numberofyear if all digits of A equals 0,1 or 2 (in decimal representation).
Prove that exist infinity $N \in \mathbb{N}$, such that N can't presented as $A^{2}+B$ where $A \in \mathbb{N}^{0} ; B$ numberofyear.

