

AoPS Community

_

_

2010 Kazakhstan National Olympiad

Kazakhstan National Olympiad 2010

www.artofproblemsolving.com/community/c4043 by Ovchinnikov Denis

Day 9	
1	Triangle <i>ABC</i> is given. Circle ω passes through <i>B</i> , touch <i>AC</i> in <i>D</i> and intersect sides <i>AB</i> and <i>BC</i> at <i>P</i> and <i>Q</i> respectively. Line <i>PQ</i> intersect <i>BD</i> and <i>AC</i> at <i>M</i> and <i>N</i> respectively. Prove that ω , circumcircle of <i>DMN</i> and circle, touching <i>PQ</i> in <i>M</i> and passes through B, intersects in one point.
2	Exactly $4n$ numbers in set $A = \{1, 2, 3,, 6n\}$ of natural numbers painted in red, all other in blue. Proved that exist $3n$ consecutive natural numbers from A , exactly $2n$ of which numbers is red.
3	Positive real A is given. Find maximum value of M for which inequality $\frac{1}{x} + \frac{1}{y} + \frac{A}{x+y} \ge \frac{M}{\sqrt{xy}}$ holds for all $x, y > 0$
4	Let x- minimal root of equation $x^2 - 4x + 2 = 0$. Find two first digits of number $\{x + x^2 + \dots + x^{20}\}$ after 0, where $\{a\}$ - fractional part of a.
5	Arbitrary triangle <i>ABC</i> is given (with $AB < BC$). Let <i>M</i> - midpoint of <i>AC</i> , <i>N</i> - midpoint of arc <i>AC</i> of circumcircle <i>ABC</i> , which is contains point <i>B</i> . Let <i>I</i> - in-center of <i>ABC</i> . Proved, that $\angle IMA = \angle INB$
6	Let numbers $1, 2, 3,, 2010$ stand in a row at random. Consider row, obtain by next rule: For any number we sum it and it's number in a row (For example for row $(2, 7, 4)$ we consider a row $(2 + 1; 7 + 2; 4 + 3) = (3; 9; 7)$); Proved, that in resulting row we can found two equals numbers, or two numbers, which is differ by 2010
Day 1	Ω

Day 10

1 Triangle ABC is given. Consider ellipse Ω_1 , passes through C with focuses in A and B. Similarly define ellipses Ω_2, Ω_3 with focuses B, C and C, A respectively. Prove, that if all ellipses have common point D then A, B, C, D lies on the circle.

Ellipse with focuses X, Y, passes through Z-locus of point T, such that XT + YT = XZ + YZ

AoPS Community

2010 Kazakhstan National Olympiad

2	On sides of convex quadrilateral $ABCD$ on external side constructed equilateral triangles ABK, BCL, CDM, DAN . Let P, Q - midpoints of BL, AN respectively and X - circumcenter of CMD . Prove, that PQ perpendicular to KX
3	Call $A \in \mathbb{N}^0$ be <i>numberofyear</i> if all digits of A equals 0, 1 or 2 (in decimal representation). Prove that exist infinity $N \in \mathbb{N}$, such that N can't presented as $A^2 + B$ where $A \in \mathbb{N}^0$; <i>B</i> - <i>numberofyear</i> .
4	It is given that for some $n \in \mathbb{N}$ there exists a natural number a , such that $a^{n-1} \equiv 1 \pmod{n}$ and that for any prime divisor p of $n-1$ we have $a^{\frac{n-1}{p}} \not\equiv 1 \pmod{n}$. Prove that n is a prime.
5	Let $n \ge 2$ be an integer. Define $x_i = 1$ or -1 for every $i = 1, 2, 3, \cdots, n$.
	Call an operation <i>adhesion</i> , if it changes the string (x_1, x_2, \dots, x_n) to $(x_1x_2, x_2x_3, \dots, x_{n-1}x_n, x_nx_1)$.
	Find all integers $n \ge 2$ such that the string (x_1, x_2, \dots, x_n) changes to $(1, 1, \dots, 1)$ after finitely <i>adhesion</i> operations.
6	Let $ABCD$ be convex quadrilateral, such that exist M, N inside $ABCD$ for which $\angle NAD = \angle MAB; \angle NBC = \angle MBA; \angle MCB = \angle NCD; \angle NDA = \angle MDC$ Prove, that $S_{ABM} + S_{ABN} + S_{CDM} + S_{CDN} = S_{BCM} + S_{BCN} + S_{ADM} + S_{ADN}$, where S_{XYZ} -area of triangle XYZ
Day	11
1	It is given that for some $n \in \mathbb{N}$ there exists a natural number a , such that $a^{n-1} \equiv 1 \pmod{n}$ and that for any prime divisor p of $n-1$ we have $a^{\frac{n-1}{p}} \not\equiv 1 \pmod{n}$. Prove that n is a prime.
2	Let $n \ge 2$ be an integer. Define $x_i = 1$ or -1 for every $i = 1, 2, 3, \cdots, n$.
	Call an operation <i>adhesion</i> , if it changes the string (x_1, x_2, \dots, x_n) to $(x_1x_2, x_2x_3, \dots, x_{n-1}x_n, x_nx_1)$.
	Find all integers $n \ge 2$ such that the string (x_1, x_2, \dots, x_n) changes to $(1, 1, \dots, 1)$ after finitely <i>adhesion</i> operations.
3	Let <i>ABCD</i> be convex quadrilateral, such that exist <i>M</i> , <i>N</i> inside <i>ABCD</i> for which $\angle NAD = \angle MAB; \angle NBC = \angle MBA; \angle MCB = \angle NCD; \angle NDA = \angle MDC$

AoPS Community

2010 Kazakhstan National Olympiad

Prove, that $S_{ABM} + S_{ABN} + S_{CDM} + S_{CDN} = S_{BCM} + S_{BCN} + S_{ADM} + S_{ADN}$, where S_{XYZ} -area of triangle XYZ

For x; y ≥ 0 prove the inequality: √x² - x + 1√y² - y + 1 + √x² + x + 1√y² + y + 1 ≥ 2(x + y)
Let O be the circumcircle of acute triangle ABC, AD-altitude of ABC (D ∈ BC), AD ∩ CO = E, M-midpoint of AE, F-feet of perpendicular from C to AO. Proved that point of intersection OM and BC lies on circumcircle of triangle BOF
Call A ∈ N⁰ be numberofyear if all digits of A equals 0, 1 or 2 (in decimal representation). Prove that exist infinity N ∈ N, such that N can't presented as A² + B where A ∈ N⁰; Bnumberofyear.

AoPS Online AoPS Academy AoPS Academy

Art of Problem Solving is an ACS WASC Accredited School.