

# **AoPS Community**

# 2011 Kazakhstan National Olympiad

#### Kazakhstan National Olympiad 2011

www.artofproblemsolving.com/community/c4044 by ts0\_9

| - | Grade 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | The quadrilateral $ABCD$ is circumscribed about the circle, touches the sides $AB, BC, CD, DA$ in the points $K, L, M, N$ , respectively. Let $P, Q, R, S$ midpoints of the sides $KL, LM, MN, NK$ .<br>Prove that $PR = QS$ if and only if $ABCD$ is inscribed.                                                                                                                                                                                                                                         |
| 2 | Determine the smallest possible number $n > 1$ such that there exist positive integers $a_1, a_2, \ldots, a_n$ for which $a_1^2 + \cdots + a_n^2 \mid (a_1 + \cdots + a_n)^2 - 1$ .                                                                                                                                                                                                                                                                                                                      |
| 3 | In some cells of a rectangular table $m \times n(m, n > 1)$ is one checker. <i>Baby</i> cut along the lines<br>of the grid this table so that it is split into two equal parts, with the number of pieces on each<br>side were the same. <i>Carlson</i> changed the arrangement of checkers on the board (and on each<br>side of the cage is still worth no more than one pieces). Prove that the <i>Baby</i> may again cut the<br>board into two equal parts containing an equal number of pieces       |
| 4 | We write in order of increasing number of 1 and all positive integers,<br>which the sum of digits is divisible by 5. Obtain a sequence of<br>$1,5,14,19\ldots$                                                                                                                                                                                                                                                                                                                                           |
|   | Prove that the n-th term of the sequence is less than $5n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5 | Given a non-degenerate triangle $ABC$ , let $A_1, B_1, C_1$ be the point of tangency of the incircle<br>with the sides $BC, AC, AB$ . Let $Q$ and $L$ be the intersection of the segment $AA_1$ with the<br>incircle and the segment $B_1C_1$ respectively. Let $M$ be the midpoint of $B_1C_1$ . Let $T$ be the point<br>of intersection of $BC$ and $B_1C_1$ . Let $P$ be the foot of the perpendicular from the point $L$ on the<br>line $AT$ . Prove that the points $A_1, M, Q, P$ lie on a circle. |
| 6 | Given a positive integer <i>n</i> . One of the roots of a quadratic equation $x^2 - ax + 2n = 0$ is equal to $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}}$ . Prove that $2\sqrt{2n} \le a \le 3\sqrt{n}$                                                                                                                                                                                                                                                                       |
| - | Grade 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 | Inscribed in a triangle $ABC$ with the center of the circle $I$ touch the sides $AB$ and $AC$ at points $C_1$ and $B_1$ , respectively. The point $M$ divides the segment $C_1B_1$ in a 3:1 ratio, measured from $C_1$ . $N$ - the midpoint of $AC$ . Prove that the points $I, M, B_1, N$ lie on a circle, if you know that $AC = 3(BC - AB)$ .                                                                                                                                                         |
| 2 | Given a positive integer <i>n</i> . Prove the inequality $\sum_{i=1}^{n} \frac{1}{i(i+1)(i+2)(i+3)(i+4)} < \frac{1}{96}$                                                                                                                                                                                                                                                                                                                                                                                 |

### AoPS Community

#### 2011 Kazakhstan National Olympiad

- 3 In some cells of a rectangular table  $m \times n(m, n > 1)$  is one checker. *Baby* cut along the lines of the grid this table so that it is split into two equal parts, with the number of pieces on each side were the same. *Carlson* changed the arrangement of checkers on the board (and on each side of the cage is still worth no more than one pieces). Prove that the *Baby* may again cut the board into two equal parts containing an equal number of pieces
- 4 Prove that there are infinitely many natural numbers, the arithmetic mean and geometric mean of the divisors which are both integers.
- **5** Given a non-degenerate triangle ABC, let  $A_1, B_1, C_1$  be the point of tangency of the incircle with the sides BC, AC, AB. Let Q and L be the intersection of the segment  $AA_1$  with the incircle and the segment  $B_1C_1$  respectively. Let M be the midpoint of  $B_1C_1$ . Let T be the point of intersection of BC and  $B_1C_1$ . Let P be the foot of the perpendicular from the point L on the line AT. Prove that the points  $A_1, M, Q, P$  lie on a circle.
- **6** Determine all pairs of positive real numbers (a, b) for which there exists a function  $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying for all positive real numbers x the equation f(f(x)) = af(x) - bx
- Grade 11
- 1 Given a real number a > 0. How many positive real solutions of the equation is  $a^x = x^a$
- 2 Let *w*-circumcircle of triangle *ABC* with an obtuse angle *C* and *C*'symmetric point of point *C* with respect to *AB*. *M* midpoint of *AB*. *C'M* intersects *w* at *N* (*C'* between *M* and *N*). Let *BC'* second crossing point *w* in *F*, and *AC'* again crosses the *w* at point *E*. *K*-midpoint *EF*. Prove that the lines *AB*, *CN* and *KC'* are concurrent.
- **3** Given are the odd integers m > 1, k, and a prime p such that p > mk + 1. Prove that  $p^2 | \binom{k}{k}^m + \binom{k+1}{k}^m + \cdots + \binom{p-1}{k}^m$ .
- 4 Prove that there are infinitely many natural numbers, the arithmetic mean and geometric mean of the divisors which are both integers.
- **5** On the table lay a pencil, sharpened at one end. The student can rotate the pencil around one of its ends at  $45^{\circ}$  clockwise or counterclockwise. Can the student, after a few turns of the pencil, go back to the starting position so that the sharpened end and the not sharpened are reversed?
- **6** We call a square table of a binary, if at each cell is written a single number 0 or 1. The binary table is called regular if each row and each column exactly two units. Determine the number of regular size tables  $n \times n$  (n > 1 given a fixed positive integer). (We can assume that the

# **AoPS Community**

# 2011 Kazakhstan National Olympiad

rows and columns of the tables are numbered: the cases of coincidence in turn, reflect, and so considered different).

Act of Problem Solving is an ACS WASC Accredited School.