Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2012

www.artofproblemsolving.com/community/c4045
by ts0_9

- \quad Grade level 9

Day 1

1 Solve the equation $p+\sqrt{q^{2}+r}=\sqrt{s^{2}+t}$ in prime numbers.
2 Given two circles k_{1} and k_{2} with centers O_{1} and O_{2} that intersect at the points A and B.Passes through A two lines that intersect the circle k_{1} at the points N_{1} and M_{1}, and the circle k_{2} at the points N_{2} and M_{2} (points A, N_{1}, M_{1} in colinear). Denote the midpoints of the segments $N_{1} N_{2}$ and $M_{1} M_{2]}$, through N and M.Prove that: a) Points M, N, A and B lie on a circle b)The center of the circle passing through M, N, A and B lies in the middle of the segment $O_{1} O_{2}$

3 Let $a, b, c, d>0$ for which the following conditions:: $a)(a-c)(b-d)=-4 b) \frac{a+c}{2} \geq \frac{a^{2}+b^{2}+c^{2}+d^{2}}{a+b+c+d}$ Find the minimum of expression $a+c$

Day 2

1 Do there exist a infinite sequence of positive integers $\left(a_{n}\right)$, such that for any $n \geq 1$ the relation $a_{n+2}=\sqrt{a_{n+1}}+a_{n}$?

2 Given an inscribed quadrilateral $A B C D$, which marked the midpoints of the points M, N, P, Q in this order. Let diagonals $A C$ and $B D$ intersect at point O. Prove that the triangle $O M N, O N P, O P Q, O Q$ have the same radius of the circles

3 The cell of a $(2 m+1) \times(2 n+1)$ board are painted in two colors - white and black. The unit cell of a row (column) is called dominant on the row (the column) if more than half of the cells that row (column) have the same color as this cell. Prove that at least $m+n-1$ cells on the board are dominant in both their row and column.

- \quad Grade level 10

Day 1

1 For a positive reals x_{1}, \ldots, x_{n} prove inequlity: $\frac{1}{x_{1}+1}+\ldots+\frac{1}{x_{n}+1} \leq \frac{n}{1+\frac{1}{x_{1}+\ldots+\frac{1}{x_{n}}}}$
2 Let $A B C D$ be an inscribed quadrilateral, in which $\angle B A D<90$. On the rays $A B$ and $A D$ are selected points K and L, respectively, such that $K A=K D, L A=L B$. Let N - the midpoint of

AoPS Community

$A C$.Prove that if $\angle B N C=\angle D N C$,so $\angle K N L=\angle B C D$
3 There are n balls numbered from 1 to n, and $2 n-1$ boxes numbered from 1 to $2 n-1$. For each i, ball number i can only be put in the boxes with numbers from 1 to $2 i-1$. Let k be an integer from 1 to n. In how many ways we can choose k balls, k boxes and put these balls in the selected boxes so that each box has exactly one ball?

Day 2

1 Let k_{1}, k_{2}, k_{3}-Excircles triangle $A_{1} A_{2} A_{3}$ with area $S . k_{1}$ touch side $A_{2} A_{3}$ at the point B_{1} Direct $A_{1} B_{1}$ intersect k_{1} at the points B_{1} and C_{1}. Let S_{1} - area of the quadrilateral $A_{1} A_{2} C_{1} A_{3}$ Similarly, we define S_{2}, S_{3}. Prove that $\frac{1}{S} \leq \frac{1}{S_{1}}+\frac{1}{S_{2}}+\frac{1}{S_{2}}$

2 Function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x f(y))=y f(x)$ for any x, y are real numbers. Prove that $f(-x)=-f(x)$ for all real numbers x.

3 The sequence a_{n} defined as follows: $a_{1}=4, a_{2}=17$ and for any $k \geq 1$ true equalities $a_{2 k+1}=$ $a_{2}+a_{4}+\ldots+a_{2 k}+(k+1)\left(2^{2 k+3}-1\right) a_{2 k+2}=\left(2^{2 k+2}+1\right) a_{1}+\left(2^{2 k+3}+1\right) a_{3}+\ldots+\left(2^{3 k+1}+1\right) a_{2 k-1}+k$ Find the smallest m such that $\left(a_{1}+\ldots a_{m}\right)^{2012^{2012}}-1$ divided $2^{2012^{2012}}$

- \quad Grade level 11

Day 1

1 The number $\overline{13 \ldots 3}$, with $k>1$ digits 3 , is a prime. Prove that $6 \mid k^{2}-2 k+3$.
2 We call a 6×6 table consisting of zeros and ones right if the sum of the numbers in each row and each column is equal to 3 . Two right tables are called similar if one can get from one to the other by successive interchanges of rows and columns. Find the largest possible size of a set of pairwise similar right tables.

3 Line $P Q$ is tangent to the incircle of triangle $A B C$ in such a way that the points P and Q lie on the sides $A B$ and $A C$, respectively. On the sides $A B$ and $A C$ are selected points M and N, respectively, so that $A M=B P$ and $A N=C Q$. Prove that all lines constructed in this manner $M N$ pass through one point

Day 2

1 Function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x f(y))=y f(x)$ for any x, y are real numbers. Prove that $f(-x)=-f(x)$ for all real numbers x.

2 Given the rays $O P$ and $O Q$. Inside the smaller angle $P O Q$ selected points M and N, such that $\angle P O M=\angle Q O N$ and $\angle P O M<\angle P O N$ The circle, which concern the rays $O P$ and $O N$,
intersects the second circle, which concern the rays $O M$ and $O Q$ at the points B and C. Prove that $\angle P O C=\angle Q O B$

3 Consider the equation $a x^{2}+b y^{2}=1$, where a, b are fixed rational numbers. Prove that either such an equation has no solutions in rational numbers, or it has infinitely many solutions.

