

AoPS Community

2012 Kazakhstan National Olympiad

Kazakhstan National Olympiad 2012

www.artofproblemsolving.com/community/c4045 by ts0_9

-	Grade level 9
Day 1	
1	Solve the equation $p + \sqrt{q^2 + r} = \sqrt{s^2 + t}$ in prime numbers.
2	Given two circles k_1 and k_2 with centers O_1 and O_2 that intersect at the points A and B .Passes through A two lines that intersect the circle k_1 at the points N_1 and M_1 , and the circle k_2 at the points N_2 and M_2 (points A, N_1, M_1 in colinear). Denote the midpoints of the segments N_1N_2 and M_1M_2 , through N and M .Prove that: a) Points M, N, A and B lie on a circle b)The center of the circle passing through M, N, A and B lies in the middle of the segment O_1O_2
3	Let $a, b, c, d > 0$ for which the following conditions:: a) $(a - c)(b - d) = -4 b$) $\frac{a+c}{2} \ge \frac{a^2+b^2+c^2+d^2}{a+b+c+d}$ Find the minimum of expression $a + c$
Day 2	
1	Do there exist a infinite sequence of positive integers (a_n) , such that for any $n \ge 1$ the relation $a_{n+2} = \sqrt{a_{n+1}} + a_n$?
2	Given an inscribed quadrilateral $ABCD$, which marked the midpoints of the points M, N, P, Q in this order. Let diagonals AC and BD intersect at point O . Prove that the triangle OMN, ONP , have the same radius of the circles
3	The cell of a $(2m + 1) \times (2n + 1)$ board are painted in two colors - white and black. The unit cell of a row (column) is called <i>dominant</i> on the row (the column) if more than half of the cells that row (column) have the same color as this cell. Prove that at least $m + n - 1$ cells on the board are dominant in both their row and column.
-	Grade level 10
Day 1	
1	For a positive reals $x_1,, x_n$ prove inequiity: $\frac{1}{x_1+1} + + \frac{1}{x_n+1} \le \frac{n}{1+\frac{n}{x_1++\frac{1}{x_n}}}$
2	Let <i>ABCD</i> be an inscribed quadrilateral, in which $\angle BAD < 90$. On the rays <i>AB</i> and <i>AD</i> are selected points <i>K</i> and <i>L</i> , respectively, such that $KA = KD$, $LA = LB$. Let <i>N</i> - the midpoint of

AoPS Community

2012 Kazakhstan National Olympiad

	AC .Prove that if $\angle BNC = \angle DNC$,so $\angle KNL = \angle BCD$	
3	There are <i>n</i> balls numbered from 1 to <i>n</i> , and $2n - 1$ boxes numbered from 1 to $2n - 1$. For each <i>i</i> , ball number <i>i</i> can only be put in the boxes with numbers from 1 to $2i - 1$. Let <i>k</i> be an integer from 1 to <i>n</i> . In how many ways we can choose <i>k</i> balls, <i>k</i> boxes and put these balls in the selected boxes so that each box has exactly one ball?	
Day 2		
1	Let k_1, k_2, k_3 -Excircles triangle $A_1A_2A_3$ with area S . k_1 touch side A_2A_3 at the point B_1 Direct A_1B_1 intersect k_1 at the points B_1 and C_1 .Let S_1 - area of the quadrilateral $A_1A_2C_1A_3$ Similarly, we define S_2, S_3 . Prove that $\frac{1}{S} \leq \frac{1}{S_1} + \frac{1}{S_2} + \frac{1}{S_2}$	
2	Function $f : \mathbb{R} \to \mathbb{R}$ such that $f(xf(y)) = yf(x)$ for any x, y are real numbers. Prove that $f(-x) = -f(x)$ for all real numbers x .	
3	The sequence a_n defined as follows: $a_1 = 4, a_2 = 17$ and for any $k \ge 1$ true equalities $a_{2k+1} = a_2 + a_4 + + a_{2k} + (k+1)(2^{2k+3}-1) a_{2k+2} = (2^{2k+2}+1)a_1 + (2^{2k+3}+1)a_3 + + (2^{3k+1}+1)a_{2k-1} + k$ Find the smallest m such that $(a_1 + a_m)^{2012^{2012}} - 1$ divided $2^{2012^{2012}}$	
-	Grade level 11	
Day 1		
1	The number $\overline{133}$, with $k > 1$ digits 3, is a prime. Prove that $6 \mid k^2 - 2k + 3$.	
2	We call a 6×6 table consisting of zeros and ones <i>right</i> if the sum of the numbers in each row and each column is equal to 3. Two right tables are called <i>similar</i> if one can get from one to the other by successive interchanges of rows and columns. Find the largest possible size of a set of pairwise similar right tables.	
3	Line PQ is tangent to the incircle of triangle ABC in such a way that the points P and Q lie on the sides AB and AC , respectively. On the sides AB and AC are selected points M and N respectively, so that $AM = BP$ and $AN = CQ$. Prove that all lines constructed in this manner MN pass through one point	
Day 2		
1	Function $f : \mathbb{R} \to \mathbb{R}$ such that $f(xf(y)) = yf(x)$ for any x, y are real numbers. Prove tha $f(-x) = -f(x)$ for all real numbers x .	
2	Given the rays <i>OP</i> and <i>OQ</i> .Inside the smaller angle <i>POQ</i> selected points <i>M</i> and <i>N</i> , such that $\angle POM = \angle QON$ and $\angle POM < \angle PON$ The circle, which concern the rays <i>OP</i> and <i>ON</i>	

AoPS Community

2012 Kazakhstan National Olympiad

intersects the second circle, which concern the rays OM and OQ at the points B and C. Prove that $\angle POC = \angle QOB$

3 Consider the equation $ax^2 + by^2 = 1$, where a, b are fixed rational numbers. Prove that either such an equation has no solutions in rational numbers, or it has infinitely many solutions.

AoPS Online 🔯 AoPS Academy 🔯 AoPS and AoPS