

AoPS Community

2013 Kazakhstan National Olympiad

Kazakhstan National Olympiad 2013

www.artofproblemsolving.com/community/c4046 by hal9v4ik, ts0_9

-	Grade level 9
Day 1	
1	On the board written numbers from 1 to 25. Bob can pick any three of them say a, b, c and replace by $a^3 + b^3 + c^3$. Prove that last number on the board can not be 2013^3 .
2	Prove that for all natural <i>n</i> there exists a, b, c such that $n = \text{gcd}(a, b)(c^2 - ab) + \text{gcd}(b, c)(a^2 - bc) + \text{gcd}(c, a)(b^2 - ca)$.
Day 2	
1	Given triangle ABC with incenter I. Let P,Q be point on circumcircle such that $\angle API = \angle CPI$ and $\angle BQI = \angle CQI$. Prove that BP, AQ and OI are concurrent.
2	a)Does there exist for any rational number $\frac{a}{b}$ some rational numbers $x_1, x_2,, x_n$ such that $x_1 * x_2 * * x_n = 1$ and $x_1 + x_2 + + x_n = \frac{a}{b}$ a)Does there exist for any rational number $\frac{a}{b}$ some rational numbers $x_1, x_2,, x_n$ such that $x_1 * x_2 * * x_n = \frac{a}{b}$ and $x_1 + x_2 + + x_n = 1$
_	Grade level 10
Day 1	
1	On the board written numbers from 1 to 25. Bob can pick any three of them say a, b, c and replace by $a^3 + b^3 + c^3$. Prove that last number on the board can not be 2013^3 .
2	Let for natural numbers a, b, c and any natural n we have that $(abc)^n$ divides $((a^n - 1)(b^n - 1)(c^n - 1) + 1)^3$. Prove that then $a = b = c$.
3	Let $ABCD$ be cyclic quadrilateral. Let AC and BD intersect at R , and let AB and CD intersect at K . Let M and N are points on AB and CD such that $\frac{AM}{MB} = \frac{CN}{ND}$. Let P and Q be the intersections of MN with the diagonals of $ABCD$. Prove that circumcircles of triangles KMN and PQR are tangent at a fixed point.
D 0	

Day 2

AoPS Community

2013 Kazakhstan National Olympiad

1	Find maximum value of $ a^2 - bc + 1 + b^2 - ac + 1 + c^2 - ba + 1 $ when a, b, c are reals in $[-2; 2]$.	
2	Let in triangle <i>ABC</i> incircle touches sides <i>AB</i> , <i>BC</i> , <i>CA</i> at C_1 , A_1 , B_1 respectively. Let $\frac{2}{CA_1} = \frac{1}{BC_1} + \frac{1}{AC_1}$. Prove that if <i>X</i> is intersection of incircle and <i>CC</i> ₁ then $3CX = CC_1$	
3	How many non-intersecting pairs of paths we have from (0,0) to (n,n) so that path can move two ways:top or right?	
-	Grade level 11	
Day 1		
1	Find all triples of positive integer (m, n, k) such that $k^m m^n - 1$ and $k^n n^m - 1$	
2	Given triangle ABC with incenter I. Let P,Q be point on circumcircle such that $\angle API = \angle CPI$ and $\angle BQI = \angle CQI$. Prove that BP, AQ and OI are concurrent.	
3	Consider the following sequence : $a_1 = 1$; $a_n = \frac{a_{\lfloor \frac{n}{2} \rfloor}}{2} + \frac{a_{\lfloor \frac{n}{3} \rfloor}}{3} + \ldots + \frac{a_{\lfloor \frac{n}{n} \rfloor}}{n}$. Prove that $a_{2n} < 2 * a_n (\forall n \in \mathbb{N})$	
Day 2	2	
1	Find maximum value of $ a^2 - bc + 1 + b^2 - ac + 1 + c^2 - ba + 1 $ when a, b, c are reals in $[-2; 2]$.	
2	Let in triangle <i>ABC</i> incircle touches sides <i>AB</i> , <i>BC</i> , <i>CA</i> at C_1 , A_1 , B_1 respectively. Let $\frac{2}{CA_1} = \frac{1}{BC_1} + \frac{1}{AC_1}$. Prove that if <i>X</i> is intersection of incircle and <i>CC</i> ₁ then $3CX = CC_1$	
3	How many non-intersecting pairs of paths we have from (0,0) to (n,n) so that path can move two ways:top or right?	

AoPS Online 🔯 AoPS Academy 🐼 AoPS & Coast

Art of Problem Solving is an ACS WASC Accredited School.