Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2013

www.artofproblemsolving.com/community/c4046
by hal9v4ik, ts0_9

- \quad Grade level 9

Day 1

1 On the board written numbers from 1 to 25 . Bob can pick any three of them say a, b, c and replace by $a^{3}+b^{3}+c^{3}$. Prove that last number on the board can not be 2013^{3}.

2 Prove that for all natural n there exists a, b, c such that $n=\operatorname{gcd}(a, b)\left(c^{2}-a b\right)+\operatorname{gcd}(b, c)\left(a^{2}-\right.$ $b c)+\operatorname{gcd}(c, a)\left(b^{2}-c a\right)$.

Day 2

1 Given triangle ABC with incenter I. Let P,Q be point on circumcircle such that $\angle A P I=\angle C P I$ and $\angle B Q I=\angle C Q I$. Prove that $B P, A Q$ and $O I$ are concurrent.

2 a)Does there exist for any rational number $\frac{a}{b}$ some rational numbers $x_{1}, x_{2}, \ldots . x_{n}$ such that $x_{1} * x_{2} * \ldots * x_{n}=1$ and $x_{1}+x_{2}+\ldots .+x_{n}=\frac{a}{b}$
a)Does there exist for any rational number $\frac{a}{b}$ some rational numbers $x_{1}, x_{2}, \ldots . x_{n}$ such that $x_{1} * x_{2} * \ldots * x_{n}=\frac{a}{b}$ and $x_{1}+x_{2}+\ldots .+x_{n}=1$

- \quad Grade level 10

Day 1

1 On the board written numbers from 1 to 25 . Bob can pick any three of them say a, b, c and replace by $a^{3}+b^{3}+c^{3}$. Prove that last number on the board can not be 2013^{3}.

2 Let for natural numbers a, b, c and any natural n we have that $(a b c)^{n}$ divides $\left(\left(a^{n}-1\right)\left(b^{n}-\right.\right.$ 1) $\left.\left(c^{n}-1\right)+1\right)^{3}$. Prove that then $a=b=c$.

3 Let $A B C D$ be cyclic quadrilateral. Let $A C$ and $B D$ intersect at R, and let $A B$ and $C D$ intersect at K. Let M and N are points on $A B$ and $C D$ such that $\frac{A M}{M B}=\frac{C N}{N D}$. Let P and Q be the intersections of $M N$ with the diagonals of $A B C D$. Prove that circumcircles of triangles $K M N$ and $P Q R$ are tangent at a fixed point.

Day 2

AoPS Community

1 Find maximum value of $\left|a^{2}-b c+1\right|+\left|b^{2}-a c+1\right|+\left|c^{2}-b a+1\right|$ when a, b, c are reals in $[-2 ; 2]$.
2 Let in triangle $A B C$ incircle touches sides $A B, B C, C A$ at C_{1}, A_{1}, B_{1} respectively. Let $\frac{2}{C A_{1}}=$ $\frac{1}{B C_{1}}+\frac{1}{A C_{1}}$. Prove that if X is intersection of incircle and $C C_{1}$ then $3 C X=C C_{1}$

3 How many non-intersecting pairs of paths we have from $(0,0)$ to (n, n) so that path can move two ways:top or right?

- \quad Grade level 11

Day 1

$1 \quad$ Find all triples of positive integer (m, n, k) such that $k^{m} \mid m^{n}-1$ and $k^{n} \mid n^{m}-1$
2 Given triangle ABC with incenter I. Let P,Q be point on circumcircle such that $\angle A P I=\angle C P I$ and $\angle B Q I=\angle C Q I$. Prove that $B P, A Q$ and $O I$ are concurrent.

3 Consider the following sequence : $a_{1}=1 ; a_{n}=\frac{a_{\left[\frac{n}{2}\right]}^{2}}{2}+\frac{a_{\left[\frac{n}{3}\right]}^{3}}{3}+\ldots+\frac{a_{\left[\frac{n}{n}\right]}^{n}}{n}$. Prove that $a_{2 n}<$ $2 * a_{n}(\forall n \in \mathbb{N})$

Day 2

1 Find maximum value of $\left|a^{2}-b c+1\right|+\left|b^{2}-a c+1\right|+\left|c^{2}-b a+1\right|$ when a, b, c are reals in $[-2 ; 2]$.
2 Let in triangle $A B C$ incircle touches sides $A B, B C, C A$ at C_{1}, A_{1}, B_{1} respectively. Let $\frac{2}{C A_{1}}=$ $\frac{1}{B C_{1}}+\frac{1}{A C_{1}}$.Prove that if X is intersection of incircle and $C C_{1}$ then $3 C X=C C_{1}$

3 How many non-intersecting pairs of paths we have from $(0,0)$ to (n, n) so that path can move two ways:top or right?

