

AoPS Community

2014 Kazakhstan National Olympiad

Kazakhstan National Olympiad 2014

www.artofproblemsolving.com/community/c4047 by rightways, ts0_9, zhumazhenis

Day 1	
1	$a_1, a_2,, a_{2014}$ is a permutation of $1, 2, 3,, 2014$. What is the greatest number of perfect squares can have a set $a_1^2 + a_2, a_2^2 + a_3, a_3^2 + a_4,, a_{2013}^2 + a_{2014}, a_{2014}^2 + a_1$?
2	Do there exist positive integers a and b such that $a^n + n^b$ and $b^n + n^a$ are relatively prime for all natural n ?
3	The triangle ABC is inscribed in a circle w_1 . Inscribed in a triangle circle touchs the sides BC in a point N . w_2 the circle inscribed in a segment BAC circle of w_1 , and passing through a point N . Let points O and J the centers of circles w_2 and an extra inscribed circle (touching side BC) respectively. Prove, that lines AO and JN are parallel.
Day 2	
1	Given a scalene triangle <i>ABC</i> . Incircle of $\triangle ABC$ touches the sides <i>AB</i> and <i>BC</i> at points C_1 and A_1 respectively, and excircle of $\triangle ABC$ (on side <i>AC</i>) touches <i>AB</i> and <i>BC</i> at points C_2 and A_2 respectively. <i>BN</i> is bisector of $\angle ABC$ (<i>N</i> lies on <i>BC</i>). Lines A_1C_1 and A_2C_2 intersects the line <i>AC</i> at points K_1 and K_2 respectively. Let circumcircles of $\triangle BK_1N$ and $\triangle BK_2N$ intersect circumcircle of a $\triangle ABC$ at points P_1 and P_2 respectively. Prove that $AP_1=CP_2$
2	\mathbb{Q} is set of all rational numbers. Find all functions $f : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ such that for all $x, y, z \in \mathbb{Q}$ satisfy $f(x, y) + f(y, z) + f(z, x) = f(0, x + y + z)$
3	Prove that, for all $n \in \mathbb{N}$, on $[n - 4\sqrt{n}, n + 4\sqrt{n}]$ exists natural number $k = x^3 + y^3$ where x, y are nonnegative integers.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱