Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2014

www.artofproblemsolving.com/community/c4047
by rightways, ts0_9, zhumazhenis

Day 1

$1 a_{1}, a_{2}, \ldots, a_{2014}$ is a permutation of $1,2,3, \ldots, 2014$. What is the greatest number of perfect squares can have a set $a_{1}^{2}+a_{2}, a_{2}^{2}+a_{3}, a_{3}^{2}+a_{4}, \ldots, a_{2013}^{2}+a_{2014}, a_{2014}^{2}+a_{1}$?

2 Do there exist positive integers a and b such that $a^{n}+n^{b}$ and $b^{n}+n^{a}$ are relatively prime for all natural n ?

3 The triangle $A B C$ is inscribed in a circle w_{1}. Inscribed in a triangle circle touchs the sides $B C$ in a point $N . w_{2}$ the circle inscribed in a segment $B A C$ circle of w_{1}, and passing through a point N. Let points O and J the centers of circles w_{2} and an extra inscribed circle (touching side $B C$) respectively. Prove, that lines $A O$ and $J N$ are parallel.

Day 2

1 Given a scalene triangle $A B C$. Incircle of $\triangle A B C$ touches the sides $A B$ and $B C$ at points C_{1} and A_{1} respectively, and excircle of $\triangle A B C$ (on side $A C$) touches $A B$ and $B C$ at points C_{2} and A_{2} respectively. $B N$ is bisector of $\angle A B C$ (N lies on $B C$). Lines $A_{1} C_{1}$ and $A_{2} C_{2}$ intersects the line $A C$ at points K_{1} and K_{2} respectively. Let circumcircles of $\triangle B K_{1} N$ and $\triangle B K_{2} N$ intersect circumcircle of a $\triangle A B C$ at points P_{1} and P_{2} respectively. Prove that $A P_{1}=C P_{2}$
$2 \mathbb{Q}$ is set of all rational numbers. Find all functions $f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ such that for all $x, y, z \in \mathbb{Q}$ satisfy $f(x, y)+f(y, z)+f(z, x)=f(0, x+y+z)$

3 Prove that, for all $n \in \mathbb{N}$, on $[n-4 \sqrt{n}, n+4 \sqrt{n}]$ exists natural number $k=x^{3}+y^{3}$ where x, y are nonnegative integers.

