

AoPS Community

Balkan MO 1984

www.artofproblemsolving.com/community/c4056 by pohoatza

- 1 Let $n \ge 2$ be a positive integer and a_1, \ldots, a_n be positive real numbers such that $a_1 + \ldots + a_n = 1$. Prove that: $\frac{a_1}{1 + a_2 + \cdots + a_n} + \cdots + \frac{a_n}{1 + a_1 + a_2 + \cdots + a_{n-1}} \ge \frac{n}{2n-1}$
- **2** Let *ABCD* be a cyclic quadrilateral and let H_A, H_B, H_C, H_D be the orthocenters of the triangles *BCD*, *CDA*, *DAB* and *ABC* respectively. Show that the quadrilaterals *ABCD* and $H_AH_BH_CH_D$ are congruent.
- **3** Show that for any positive integer m, there exists a positive integer n so that in the decimal representations of the numbers 5^m and 5^n , the representation of 5^n ends in the representation of 5^m .

4 Let a, b, c be positive real numbers. Find all real solutions (x, y, z) of the system:

 $ax + by = (x - y)^2 by + cz = (y - z)^2 cz + ax = (z - x)^2$

AoPS Online (AoPS Academy AoPS & AoPS & Academy