AoPS Community

Balkan MO 1984

www.artofproblemsolving.com/community/c4056
by pohoatza

1 Let $n \geq 2$ be a positive integer and a_{1}, \ldots, a_{n} be positive real numbers such that $a_{1}+\ldots+a_{n}=1$. Prove that:

$$
\frac{a_{1}}{1+a_{2}+\cdots+a_{n}}+\cdots+\frac{a_{n}}{1+a_{1}+a_{2}+\cdots+a_{n-1}} \geq \frac{n}{2 n-1}
$$

2 Let $A B C D$ be a cyclic quadrilateral and let $H_{A}, H_{B}, H_{C}, H_{D}$ be the orthocenters of the triangles $B C D, C D A, D A B$ and $A B C$ respectively. Show that the quadrilaterals $A B C D$ and $H_{A} H_{B} H_{C} H_{D}$ are congruent.

3 Show that for any positive integer m, there exists a positive integer n so that in the decimal representations of the numbers 5^{m} and 5^{n}, the representation of 5^{n} ends in the representation of 5^{m}.

4 Let a, b, c be positive real numbers. Find all real solutions (x, y, z) of the system:

$$
a x+b y=(x-y)^{2} b y+c z=(y-z)^{2} c z+a x=(z-x)^{2}
$$

