AoPS Community

Balkan MO 1986

www.artofproblemsolving.com/community/c4058
by pohoatza, Arne, Cezar Lupu

1 A line passing through the incenter I of the triangle $A B C$ intersect its incircle at D and E and its circumcircle at F and G, in such a way that the point D lies between I and F. Prove that: $D F \cdot E G \geq r^{2}$.

2 Let $A B C D$ be a tetrahedron and let E, F, G, H, K, L be points lying on the edges $A B, B C, C D$, $D A, D B, D C$ respectively, in such a way that

$$
A E \cdot B E=B F \cdot C F=C G \cdot A G=D H \cdot A H=D K \cdot B K=D L \cdot C L
$$

Prove that the points E, F, G, H, K, L all lie on a sphere.
3 Let a, b, c be real numbers such that $a b \neq 0$ and $c>0$. Let $\left(a_{n}\right)_{n \geq 1}$ be the sequence of real numbers defined by: $a_{1}=a, a_{2}=b$ and

$$
a_{n+1}=\frac{a_{n}^{2}+c}{a_{n-1}}
$$

for all $n \geq 2$.
Show that all the terms of the sequence are integer numbers if and only if the numbers a, b and $\frac{a^{2}+b^{2}+c}{a b}$ are integers.
$4 \quad$ Let $A B C$ a triangle and P a point such that the triangles $P A B, P B C, P C A$ have the same area and the same perimeter. Prove that if:
a) P is in the interior of the triangle $A B C$ then $A B C$ is equilateral.
b) P is in the exterior of the triangle $A B C$ then $A B C$ is right angled triangle.

