Balkan MO 1988

www.artofproblemsolving.com/community/c4060
by pohoatza

1 Let $A B C$ be a triangle and let M, N, P be points on the line $B C$ such that $A M, A N, A P$ are the altitude, the angle bisector and the median of the triangle, respectively. It is known that $\frac{[A M P]}{[A B C]}=\frac{1}{4}$ and $\frac{[A N P]}{[A B C]}=1-\frac{\sqrt{3}}{2}$.
Find the angles of triangle $A B C$.
2 Find all polynomials of two variables $P(x, y)$ which satisfy

$$
P(a, b) P(c, d)=P(a c+b d, a d+b c), \forall a, b, c, d \in \mathbb{R} .
$$

3 Let $A B C D$ be a tetrahedron and let d be the sum of squares of its edges' lengths. Prove that the tetrahedron can be included in a region bounded by two parallel planes, the distances between the planes being at most $\frac{\sqrt{d}}{2 \sqrt{3}}$

4 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence defined by $a_{n}=2^{n}+49$. Find all values of n such that $a_{n}=p g, a_{n+1}=$ $r s$, where p, q, r, s are prime numbers with $p<q, r<s$ and $q-p=s-r$.

