AoPS Community

Balkan MO 1989

www.artofproblemsolving.com/community/c4061
by pohoatza

1 Let n be a positive integer and let $d_{1}, d_{2}, \ldots, d_{k}$ be its divisors, such that $1=d_{1}<d_{2}<\ldots<$ $d_{k}=n$. Find all values of n for which $k \geq 4$ and $n=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}$.

2 Let $\overline{a_{n} a_{n-1} \ldots a_{1} a_{0}}$ be the decimal representation of a prime positive integer such that $n>1$ and $a_{n}>1$. Prove that the polynomial $P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ cannot be written as a product of two non-constant integer polynomials.
$3 \quad$ Let G be the centroid of a triangle $A B C$ and let d be a line that intersects $A B$ and $A C$ at B_{1} and C_{1}, respectively, such that the points A and G are not separated by d.
Prove that: $\left[B B_{1} G C_{1}\right]+\left[C C_{1} G B_{1}\right] \geq \frac{4}{9}[A B C]$.
4 The elements of the set F are some subsets of $\{1,2, \ldots, n\}$ and satisfy the conditions:
i) if A belongs to F, then A has three elements;
ii)if A and B are distinct elements of F, then A and B have at most one common element. Let $f(n)$ be the greatest possible number of elements of F. Prove that $\frac{n^{2}-4 n}{6} \leq f(n) \leq \frac{n^{2}-n}{6}$

