AoPS Community

Balkan MO 1990

www.artofproblemsolving.com/community/c4062
by pohoatza, Ravi B

1 The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=1, a_{2}=3$, and $a_{n+2}=(n+3) a_{n+1}-(n+2) a_{n}, \forall n \in \mathbb{N}$. Find all values of n for which a_{n} is divisible by 11 .

2 The polynomial $P(X)$ is defined by $P(X)=\left(X+2 X^{2}+\ldots+n X^{n}\right)^{2}=a_{0}+a_{1} X+\ldots+a_{2 n} X^{2 n}$. Prove that $a_{n+1}+a_{n+2}+\ldots+a_{2 n}=\frac{n(n+1)\left(5 n^{2}+5 n+2\right)}{24}$.

3 Let $A B C$ be an acute triangle and let A_{1}, B_{1}, C_{1} be the feet of its altitudes. The incircle of the triangle $A_{1} B_{1} C_{1}$ touches its sides at the points A_{2}, B_{2}, C_{2}. Prove that the Euler lines of triangles $A B C$ and $A_{2} B_{2} C_{2}$ coincide.

4 Find the least number of elements of a finite set A such that there exists a function f : $\{1,2,3, \ldots\} \rightarrow A$ with the property: if i and j are positive integers and $i-j$ is a prime number, then $f(i)$ and $f(j)$ are distinct elements of A.

