Balkan MO 1991

www.artofproblemsolving.com/community/c4063
by pohoatza

1 Let $A B C$ be an acute triangle inscribed in a circle centered at O. Let M be a point on the small arc $A B$ of the triangle's circumcircle. The perpendicular dropped from M on the ray $O A$ intersects the sides $A B$ and $A C$ at the points K and L, respectively. Similarly, the perpendicular dropped from M on the ray $O B$ intersects the sides $A B$ and $B C$ at N and P, respectively. Assume that $K L=M N$. Find the size of the angle $\angle M L P$ in terms of the angles of the triangle $A B C$.

2 Show that there are infinitely many noncongruent triangles which satisfy the following conditions:
i) the side lengths are relatively prime integers;
ii)the area is an integer number;
iii)the altitudes' lengths are not integer numbers.

3 A regular hexagon of area H is inscribed in a convex polygon of area P. Show that $P \leq \frac{3}{2} H$. When does the equality occur?

4 Prove that there is no bijective function $f:\{1,2,3, \ldots\} \rightarrow\{0,1,2,3, \ldots\}$ such that $f(m n)=$ $f(m)+f(n)+3 f(m) f(n)$.

