AoPS Community

Balkan MO 1992

www.artofproblemsolving.com/community/c4064
by Valentin Vornicu

- May 6th

1 For all positive integers m, n define $f(m, n)=m^{3^{4 n}+6}-m^{3^{4 n}+4}-m^{5}+m^{3}$. Find all numbers n with the property that $f(m, n)$ is divisible by 1992 for every m.

Bulgaria

2 Prove that for all positive integers n the following inequality takes place

$$
\left(2 n^{2}+3 n+1\right)^{n} \geq 6^{n}(n!)^{2} .
$$

Cyprus

3 Let D, E, F be points on the sides $B C, C A, A B$ respectively of a triangle $A B C$ (distinct from the vertices). If the quadrilateral $A F D E$ is cyclic, prove that

$$
\frac{4 \mathcal{A}[D E F]}{\mathcal{A}[A B C]} \leq\left(\frac{E F}{A D}\right)^{2} .
$$

Greece
4 For each integer $n \geq 3$, find the least natural number $f(n)$ having the property
\star For every $A \subset\{1,2, \ldots, n\}$ with $f(n)$ elements, there exist elements $x, y, z \in A$ that are pairwise coprime.

