

AoPS Community

Balkan MO 1992

www.artofproblemsolving.com/community/c4064 by Valentin Vornicu

-	May 6th
1	For all positive integers m, n define $f(m, n) = m^{3^{4n}+6} - m^{3^{4n}+4} - m^5 + m^3$. Find all numbers n with the property that $f(m, n)$ is divisible by 1992 for every m .
	Bulgaria
2	Prove that for all positive integers n the following inequality takes place
	$(2n^2 + 3n + 1)^n \ge 6^n (n!)^2.$
	Cyprus
3	Let D , E , F be points on the sides BC , CA , AB respectively of a triangle ABC (distinct from the vertices). If the quadrilateral $AFDE$ is cyclic, prove that
	$rac{4\mathcal{A}[DEF]}{\mathcal{A}[ABC]} \leq \left(rac{EF}{AD} ight)^2.$
	Greece
4	For each integer $n \ge 3$, find the least natural number $f(n)$ having the property

★ For every $A \subset \{1, 2, ..., n\}$ with f(n) elements, there exist elements $x, y, z \in A$ that are pairwise coprime.

