AoPS Community

Balkan MO 1993

www.artofproblemsolving.com/community/c4065
by Valentin Vornicu

- May 5th

1 Let a, b, c, d, e, f be six real numbers with sum 10 , such that

$$
(a-1)^{2}+(b-1)^{2}+(c-1)^{2}+(d-1)^{2}+(e-1)^{2}+(f-1)^{2}=6 .
$$

Find the maximum possible value of f.
Cyprus
2 A positive integer given in decimal representation $\overline{a_{n} a_{n-1} \ldots a_{1} a_{0}}$ is called monotone if $a_{n} \leq$ $a_{n-1} \leq \cdots \leq a_{0}$. Determine the number of monotone positive integers with at most 1993 digits.
$3 \quad$ Circles \mathcal{C}_{1} and \mathcal{C}_{2} with centers O_{1} and O_{2}, respectively, are externally tangent at point λ. A circle \mathcal{C} with center O touches \mathcal{C}_{1} at A and \mathcal{C}_{2} at B so that the centers O_{1}, O_{2} lie inside C. The common tangent to \mathcal{C}_{1} and \mathcal{C}_{2} at λ intersects the circle \mathcal{C} at K and L. If D is the midpoint of the segment $K L$, show that $\angle O_{1} O O_{2}=\angle A D B$.

Greece
4 Let p be a prime and $m \geq 2$ be an integer. Prove that the equation

$$
\frac{x^{p}+y^{p}}{2}=\left(\frac{x+y}{2}\right)^{m}
$$

has a positive integer solution $(x, y) \neq(1,1)$ if and only if $m=p$.
Romania

