## AoPS Community

## Balkan MO 1995

www.artofproblemsolving.com/community/c4067
by Valentin Vornicu

- May 9th

1 For all real numbers $x, y$ define $x \star y=\frac{x+y}{1+x y}$. Evaluate the expression

$$
(\cdots(((2 \star 3) \star 4) \star 5) \star \cdots) \star 1995 .
$$

## Macedonia

2 The circles $\mathcal{C}_{1}\left(O_{1}, r_{1}\right)$ and $\mathcal{C}_{2}\left(O_{2}, r_{2}\right), r_{2}>r_{1}$, intersect at $A$ and $B$ such that $\angle O_{1} A O_{2}=90^{\circ}$. The line $O_{1} O_{2}$ meets $\mathcal{C}_{1}$ at $C$ and $D$, and $\mathcal{C}_{2}$ at $E$ and $F$ (in the order $C, E, D, F$ ). The line $B E$ meets $\mathcal{C}_{1}$ at $K$ and $A C$ at $M$, and the line $B D$ meets $\mathcal{C}_{2}$ at $L$ and $A F$ at $N$. Prove that

$$
\frac{r_{2}}{r_{1}}=\frac{K E}{K M} \cdot \frac{L N}{L D} .
$$

## Greece

$3 \quad$ Let $a$ and $b$ be natural numbers with $a>b$ and having the same parity. Prove that the solutions of the equation

$$
x^{2}-\left(a^{2}-a+1\right)\left(x-b^{2}-1\right)-\left(b^{2}+1\right)^{2}=0
$$

are natural numbers, none of which is a perfect square.

## Albania

$4 \quad$ Let $n$ be a positive integer and $\mathcal{S}$ be the set of points $(x, y)$ with $x, y \in\{1,2, \ldots, n\}$. Let $\mathcal{T}$ be the set of all squares with vertices in the set $\mathcal{S}$. We denote by $a_{k}(k \geq 0)$ the number of (unordered) pairs of points for which there are exactly $k$ squares in $\mathcal{T}$ having these two points as vertices. Prove that $a_{0}=a_{2}+2 a_{3}$.
Yugoslavia

