1996 Balkan MO

AoPS Community

Balkan MO 1996

www.artofproblemsolving.com/community/c4068 by Valentin Vornicu, silouan, ehsan2004

-	April 30th
1	Let <i>O</i> be the circumcenter and <i>G</i> be the centroid of a triangle <i>ABC</i> . If <i>R</i> and <i>r</i> are the circumcenter and incenter of the triangle, respectively, prove that $OG \leq \sqrt{R(R-2r)}.$
	Greece
2	Let p be a prime number with $p > 5$. Consider the set $X = \{p - n^2 \mid n \in \mathbb{N}, n^2 < p\}$. Prove that the set X has two distinct elements x and y such that $x \neq 1$ and $x \mid y$.
	Albania
3	In a convex pentagon $ABCDE$, the points M , N , P , Q , R are the midpoints of the sides AB , BC , CD , DE , EA , respectively. If the segments AP , BQ , CR and DM pass through a single point, prove that EN contains that point as well.
	Yugoslavia
4	Suppse that $X = \{1, 2,, 2^{1996} - 1\}$, prove that there exist a subset A that satisfies these conditions:
	a) $1 \in A$ and $2^{1996} - 1 \in A$;
	b) Every element of A except 1 is equal to the sum of two (possibly equal) elements from A ;
	c) The maximum number of elements of A is 2012 .
	Romania