AoPS Community

Balkan MO 1996

www.artofproblemsolving.com/community/c4068
by Valentin Vornicu, silouan, ehsan2004

- April 30th

1 Let O be the circumcenter and G be the centroid of a triangle $A B C$. If R and r are the circumcenter and incenter of the triangle, respectively, prove that

$$
O G \leq \sqrt{R(R-2 r)}
$$

Greece
2 Let p be a prime number with $p>5$. Consider the set $X=\left\{p-n^{2} \mid n \in \mathbb{N}, n^{2}<p\right\}$. Prove that the set X has two distinct elements x and y such that $x \neq 1$ and $x \mid y$.

Albania

3 In a convex pentagon $A B C D E$, the points M, N, P, Q, R are the midpoints of the sides $A B$, $B C, C D, D E, E A$, respectively. If the segments $A P, B Q, C R$ and $D M$ pass through a single point, prove that $E N$ contains that point as well.

Yugoslavia

4 Suppse that $X=\left\{1,2, \ldots, 2^{1996}-1\right\}$, prove that there exist a subset A that satisfies these conditions:
a) $1 \in A$ and $2^{1996}-1 \in A$;
b) Every element of A except 1 is equal to the sum of two (possibly equal) elements from A;
c) The maximum number of elements of A is 2012 .

Romania

