AoPS Community

Balkan MO 1998

www.artofproblemsolving.com/community/c4070
by Valentin Vornicu

- May 5th

1 Consider the finite sequence $\left\lfloor\frac{k^{2}}{1998}\right\rfloor$, for $k=1,2, \ldots, 1997$. How many distinct terms are there in this sequence?

Greece
2 Let $n \geq 2$ be an integer, and let $0<a_{1}<a_{2}<\cdots<a_{2 n+1}$ be real numbers. Prove the inequality

$$
\sqrt[n]{a_{1}}-\sqrt[n]{a_{2}}+\sqrt[n]{a_{3}}-\cdots+\sqrt[n]{a_{2 n+1}}<\sqrt[n]{a_{1}-a_{2}+a_{3}-\cdots+a_{2 n+1}} .
$$

Bogdan Enescu, Romania

3 Let \mathcal{S} denote the set of points inside or on the border of a triangle $A B C$, without a fixed point T inside the triangle. Show that \mathcal{S} can be partitioned into disjoint closed segemnts.

Yugoslavia
4 Prove that the following equation has no solution in integer numbers:

$$
x^{2}+4=y^{5} .
$$

Bulgaria

