AoPS Community

Balkan MO 1999

www.artofproblemsolving.com/community/c4071
by Valentin Vornicu

- May 8th

1 Let O be the circumcenter of the triangle $A B C$. The segment $X Y$ is the diameter of the circumcircle perpendicular to $B C$ and it meets $B C$ at M. The point X is closer to M than Y and Z is the point on $M Y$ such that $M Z=M X$. The point W is the midpoint of $A Z$.
a) Show that W lies on the circle through the midpoints of the sides of $A B C$;
b) Show that $M W$ is perpendicular to $A Y$.

2 Let p be an odd prime congruent to 2 modulo 3 . Prove that at most $p-1$ members of the set $\left\{m^{2}-n^{3}-1 \mid 0<m, n<p\right\}$ are divisible by p.

3 Let $A B C$ be an acute-angled triangle of area 1 . Show that the triangle whose vertices are the feet of the perpendiculars from the centroid G to $A B, B C, C A$ has area between $\frac{4}{27}$ and $\frac{1}{4}$.

4 Let $\left\{a_{n}\right\}_{n \geq 0}$ be a non-decreasing, unbounded sequence of non-negative integers with $a_{0}=0$. Let the number of members of the sequence not exceeding n be b_{n}. Prove that

$$
\left(a_{0}+a_{1}+\cdots+a_{m}\right)\left(b_{0}+b_{1}+\cdots+b_{n}\right) \geq(m+1)(n+1) .
$$

