1999 Balkan MO

AoPS Community

Balkan MO 1999

www.artofproblemsolving.com/community/c4071 by Valentin Vornicu

-	May 8th
1	Let <i>O</i> be the circumcenter of the triangle <i>ABC</i> . The segment <i>XY</i> is the diameter of the circumcircle perpendicular to <i>BC</i> and it meets <i>BC</i> at <i>M</i> . The point <i>X</i> is closer to <i>M</i> than <i>Y</i> and <i>Z</i> is the point on <i>MY</i> such that $MZ = MX$. The point <i>W</i> is the midpoint of <i>AZ</i> .
	a) Show that W lies on the circle through the midpoints of the sides of ABC ;
	b) Show that MW is perpendicular to AY .
2	Let <i>p</i> be an odd prime congruent to 2 modulo 3. Prove that at most $p - 1$ members of the set $\{m^2 - n^3 - 1 \mid 0 < m, n < p\}$ are divisible by <i>p</i> .
3	Let <i>ABC</i> be an acute-angled triangle of area 1. Show that the triangle whose vertices are the feet of the perpendiculars from the centroid <i>G</i> to <i>AB</i> , <i>BC</i> , <i>CA</i> has area between $\frac{4}{27}$ and $\frac{1}{4}$.
4	Let $\{a_n\}_{n\geq 0}$ be a non-decreasing, unbounded sequence of non-negative integers with $a_0 = 0$. Let the number of members of the sequence not exceeding n be b_n . Prove that
	$(a_0 + a_1 + \dots + a_m)(b_0 + b_1 + \dots + b_n) \ge (m+1)(n+1).$