AoPS Community

Balkan MO 2001

www.artofproblemsolving.com/community/c4073
by Valentin Vornicu

1 Let a, b, n be positive integers such that $2^{n}-1=a b$. Let $k \in \mathbb{N}$ such that $a b+a-b-1 \equiv 0$ $\left(\bmod 2^{k}\right)$ and $a b+a-b-1 \neq 0\left(\bmod 2^{k+1}\right)$. Prove that k is even.

2 A convex pentagon $A B C D E$ has rational sides and equal angles. Show that it is regular.
3 Let a, b, c be positive real numbers with $a b c \leq a+b+c$. Show that

$$
a^{2}+b^{2}+c^{2} \geq \sqrt{3} a b c
$$

Cristinel Mortici, Romania
4 A cube side 3 is divided into 27 unit cubes. The unit cubes are arbitrarily labeled 1 to 27 (each cube is given a different number). A move consists of swapping the cube labeled 27 with one of its 6 neighbours. Is it possible to find a finite sequence of moves at the end of which cube 27 is in its original position, but cube n has moved to the position originally occupied by $27-n$ (for each $n=1,2, \ldots, 26$)?

