2002 Balkan MO

AoPS Community

Balkan MO 2002

www.artofproblemsolving.com/community/c4074 by Valentin Vornicu, SuperMath

- April 27th	۱
--------------	---

- 1 Consider *n* points $A_1, A_2, A_3, \ldots, A_n$ ($n \ge 4$) in the plane, such that any three are not collinear. Some pairs of distinct points among $A_1, A_2, A_3, \ldots, A_n$ are connected by segments, such that every point is connected with at least three different points. Prove that there exists k > 1 and the distinct points X_1, X_2, \ldots, X_{2k} in the set $\{A_1, A_2, A_3, \ldots, A_n\}$, such that for every $i \in \overline{1, 2k-1}$ the point X_i is connected with X_{i+1} , and X_{2k} is connected with X_1 .
- **2** Let the sequence $\{a_n\}_{n\geq 1}$ be defined by $a_1 = 20$, $a_2 = 30$ and $a_{n+2} = 3a_{n+1} a_n$ for all $n \geq 1$. Find all positive integers n such that $1 + 5a_na_{n+1}$ is a perfect square.
- **3** Two circles with different radii intersect in two points *A* and *B*. Let the common tangents of the two circles be *MN* and *ST* such that *M*, *S* lie on the first circle, and *N*, *T* on the second. Prove that the orthocenters of the triangles *AMN*, *AST*, *BMN* and *BST* are the four vertices of a rectangle.
- **4** Determine all functions $f : \mathbb{N} \to \mathbb{N}$ such that for every positive integer n we have:

 $2n + 2001 \le f(f(n)) + f(n) \le 2n + 2002.$

Act of Problem Solving is an ACS WASC Accredited School.