AoPS Community

Balkan MO 2003

www.artofproblemsolving.com/community/c4075
by Valentin Vornicu, ZetaX, warut_suk, fatih003, Myth

- May 4th

1 Can one find 4004 positive integers such that the sum of any 2003 of them is not divisible by 2003?

2 Let $A B C$ be a triangle, and let the tangent to the circumcircle of the triangle $A B C$ at A meet the line $B C$ at D. The perpendicular to $B C$ at B meets the perpendicular bisector of $A B$ at E. The perpendicular to $B C$ at C meets the perpendicular bisector of $A C$ at F. Prove that the points D, E and F are collinear.

Valentin Vornicu

3 Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ which fulfill the following conditions:
a) $f(1)+1>0$;
b) $f(x+y)-x f(y)-y f(x)=f(x) f(y)-x-y+x y$, for all $x, y \in \mathbb{Q}$;
c) $f(x)=2 f(x+1)+x+2$, for every $x \in \mathbb{Q}$.

4 A rectangle $A B C D$ has side lengths $A B=m, A D=n$, with m and n relatively prime and both odd. It is divided into unit squares and the diagonal AC intersects the sides of the unit squares at the points $A_{1}=A, A_{2}, A_{3}, \ldots, A_{k}=C$. Show that

$$
A_{1} A_{2}-A_{2} A_{3}+A_{3} A_{4}-\cdots+A_{k-1} A_{k}=\frac{\sqrt{m^{2}+n^{2}}}{m n}
$$

