AoPS Community

Balkan MO 2004

www.artofproblemsolving.com/community/c4076
by Valentin Vornicu, Michael Lipnowski, Myth

- May 7th

1 The sequence $\left\{a_{n}\right\}_{n \geq 0}$ of real numbers satisfies the relation:

$$
a_{m+n}+a_{m-n}-m+n-1=\frac{1}{2}\left(a_{2 m}+a_{2 n}\right)
$$

for all non-negative integers m and $n, m \geq n$. If $a_{1}=3$ find a_{2004}.
2 Solve in prime numbers the equation $x^{y}-y^{x}=x y^{2}-19$.
3 Let O be an interior point of an acute triangle $A B C$. The circles with centers the midpoints of its sides and passing through O mutually intersect the second time at the points K, L and M different from O. Prove that O is the incenter of the triangle $K L M$ if and only if O is the circumcenter of the triangle $A B C$.

4 The plane is partitioned into regions by a finite number of lines no three of which are concurrent. Two regions are called "neighbors" if the intersection of their boundaries is a segment, or half-line or a line (a point is not a segment). An integer is to be assigned to each region in such a way that:
i) the product of the integers assigned to any two neighbors is less than their sum;
ii) for each of the given lines, and each of the half-planes determined by it, the sum of the integers, assigned to all of the regions lying on this half-plane equal to zero.

Prove that this is possible if and only if not all of the lines are parallel.

