AoPS Community

Balkan MO 2006

www.artofproblemsolving.com/community/c4078
by Arne, silouan, Valentin Vornicu, harazi

- April 29th

1 Let a, b, c be positive real numbers. Prove the inequality

$$
\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)} \geq \frac{3}{1+a b c} .
$$

2 Let $A B C$ be a triangle and m a line which intersects the sides $A B$ and $A C$ at interior points D and F, respectively, and intersects the line $B C$ at a point E such that C lies between B and E. The parallel lines from the points A, B, C to the line m intersect the circumcircle of triangle $A B C$ at the points A_{1}, B_{1} and C_{1}, respectively (apart from A, B, C). Prove that the lines $A_{1} E$, $B_{1} F$ and $C_{1} D$ pass through the same point.

Greece

3 Find all triplets of positive rational numbers (m, n, p) such that the numbers $m+\frac{1}{n p}, n+\frac{1}{p m}$, $p+\frac{1}{m n}$ are integers.

Valentin Vornicu, Romania
4 Let m be a positive integer and $\left\{a_{n}\right\}_{n \geq 0}$ be a sequence given by $a_{0}=a \in \mathbb{N}$, and

$$
a_{n+1}= \begin{cases}\frac{a_{n}}{2} & \text { if } a_{n} \equiv 0 \quad(\bmod 2) \\ a_{n}+m & \text { otherwise }\end{cases}
$$

Find all values of a such that the sequence is periodical (starting from the beginning).

