AoPS Community

Balkan MO 2009

www.artofproblemsolving.com/community/c4081
by augustin_p, Ahiles

- April 30th

1 Solve the equation

$$
3^{x}-5^{y}=z^{2} .
$$

in positive integers.
Greece
2 Let $M N$ be a line parallel to the side $B C$ of a triangle $A B C$, with M on the side $A B$ and N on the side $A C$. The lines $B N$ and $C M$ meet at point P. The circumcircles of triangles $B M P$ and $C N P$ meet at two distinct points P and Q. Prove that $\angle B A Q=\angle C A P$.

Liubomir Chiriac, Moldova

3 A 9×12 rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres $C_{1}, C_{2}, \ldots, C_{96}$ in such way that the following to conditions are both fulfilled
i) the distances $C_{1} C_{2}, \ldots, C_{95} C_{96}, C_{96} C_{1}$ are all equal to $\sqrt{13}$,
ii) the closed broken line $C_{1} C_{2} \ldots C_{96} C_{1}$ has a centre of symmetry?

Bulgaria

4 Denote by S the set of all positive integers. Find all functions $f: S \rightarrow S$ such that

$$
f\left(f^{2}(m)+2 f^{2}(n)\right)=m^{2}+2 n^{2}
$$

for all $m, n \in S$.
Bulgaria

