AoPS Community

Balkan MO 2010

www.artofproblemsolving.com/community/c4082
by augustin_p, sandu2508

- May 4th

1 Let a, b and c be positive real numbers. Prove that

$$
\frac{a^{2} b(b-c)}{a+b}+\frac{b^{2} c(c-a)}{b+c}+\frac{c^{2} a(a-b)}{c+a} \geq 0 .
$$

2 Let $A B C$ be an acute triangle with orthocentre H, and let M be the midpoint of $A C$. The point C_{1} on $A B$ is such that $C C_{1}$ is an altitude of the triangle $A B C$. Let H_{1} be the reflection of H in $A B$. The orthogonal projections of C_{1} onto the lines $A H_{1}, A C$ and $B C$ are P, Q and R, respectively. Let M_{1} be the point such that the circumcentre of triangle $P Q R$ is the midpoint of the segment $M M_{1}$.
Prove that M_{1} lies on the segment $B H_{1}$.
3 A strip of width w is the set of all points which lie on, or between, two parallel lines distance w apart. Let S be a set of $n(n \geq 3)$ points on the plane such that any three different points of S can be covered by a strip of width 1 .
Prove that S can be covered by a strip of width 2 .
4 For each integer $n(n \geq 2)$, let $f(n)$ denote the sum of all positive integers that are at most n and not relatively prime to n.
Prove that $f(n+p) \neq f(n)$ for each such n and every prime p.

