2010 Balkan MO

AoPS Community

Balkan MO 2010

www.artofproblemsolving.com/community/c4082 by augustin_p, sandu2508

-	May 4th	

1 Let *a*, *b* and *c* be positive real numbers. Prove that

$$\frac{a^2b(b-c)}{a+b} + \frac{b^2c(c-a)}{b+c} + \frac{c^2a(a-b)}{c+a} \ge 0.$$

2 Let ABC be an acute triangle with orthocentre H, and let M be the midpoint of AC. The point C_1 on AB is such that CC_1 is an altitude of the triangle ABC. Let H_1 be the reflection of H in AB. The orthogonal projections of C_1 onto the lines AH_1 , AC and BC are P, Q and R, respectively. Let M_1 be the point such that the circumcentre of triangle PQR is the midpoint of the segment MM_1 .

Prove that M_1 lies on the segment BH_1 .

- **3** A strip of width w is the set of all points which lie on, or between, two parallel lines distance w apart. Let S be a set of $n (n \ge 3)$ points on the plane such that any three different points of S can be covered by a strip of width 1. Prove that S can be covered by a strip of width 2.
- 4 For each integer $n \ (n \ge 2)$, let f(n) denote the sum of all positive integers that are at most n and not relatively prime to n. Prove that $f(n + p) \ne f(n)$ for each such n and every prime p.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱