AoPS Community

Balkan MO 2011

www.artofproblemsolving.com/community/c4083
by augustin_p, frenchy

- May 6th

1 Let $A B C D$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at E. The midpoints of $A B$ and $C D$ are F and G respectively, and ℓ is the line through G parallel to $A B$. The feet of the perpendiculars from E onto the lines ℓ and $C D$ are H and K, respectively. Prove that the lines $E F$ and $H K$ are perpendicular.

2 Given real numbers x, y, z such that $x+y+z=0$, show that

$$
\frac{x(x+2)}{2 x^{2}+1}+\frac{y(y+2)}{2 y^{2}+1}+\frac{z(z+2)}{2 z^{2}+1} \geq 0
$$

When does equality hold?
$3 \quad$ Let S be a finite set of positive integers which has the following property:if x is a member of S,then so are all positive divisors of x. A non-empty subset T of S is good if whenever $x, y \in T$ and $x<y$, the ratio y / x is a power of a prime number. A non-empty subset T of S is bad if whenever $x, y \in T$ and $x<y$, the ratio y / x is not a power of a prime number. A set of an element is considered both good and bad. Let k be the largest possible size of a good subset of S. Prove that k is also the smallest number of pairwise-disjoint bad subsets whose union is S.

4 Let $A B C D E F$ be a convex hexagon of area 1, whose opposite sides are parallel. The lines $A B$, $C D$ and $E F$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $B C, D E$ and $F A$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3 / 2$.

