## AoPS Community

## Balkan MO 2012

www.artofproblemsolving.com/community/c4084
by cefer

- April 28th

1 Let $A, B$ and $C$ be points lying on a circle $\Gamma$ with centre $O$. Assume that $\angle A B C>90$. Let $D$ be the point of intersection of the line $A B$ with the line perpendicular to $A C$ at $C$. Let $l$ be the line through $D$ which is perpendicular to $A O$. Let $E$ be the point of intersection of $l$ with the line $A C$, and let $F$ be the point of intersection of $\Gamma$ with $l$ that lies between $D$ and $E$.
Prove that the circumcircles of triangles $B F E$ and $C F D$ are tangent at $F$.
2 Prove that

$$
\sum_{\text {cyc }}(x+y) \sqrt{(z+x)(z+y)} \geq 4(x y+y z+z x),
$$

for all positive real numbers $x, y$ and $z$.
3 Let $n$ be a positive integer. Let $P_{n}=\left\{2^{n}, 2^{n-1} \cdot 3,2^{n-2} \cdot 3^{2}, \ldots, 3^{n}\right\}$. For each subset $X$ of $P_{n}$, we write $S_{X}$ for the sum of all elements of $X$, with the convention that $S_{\emptyset}=0$ where $\emptyset$ is the empty set. Suppose that $y$ is a real number with $0 \leq y \leq 3^{n+1}-2^{n+1}$.
Prove that there is a subset $Y$ of $P_{n}$ such that $0 \leq y-S_{Y}<2^{n}$
$4 \quad$ Let $\mathbb{Z}^{+}$be the set of positive integers. Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that the following conditions both hold:
(i) $f(n!)=f(n)$ ! for every positive integer $n$,
(ii) $m-n$ divides $f(m)-f(n)$ whenever $m$ and $n$ are different positive integers.

