AoPS Community

Balkan MO 2014

www.artofproblemsolving.com/community/c4086
by shivangjindal, Ifetahu

- May 4th

1 Let x, y and z be positive real numbers such that $x y+y z+x z=3 x y z$. Prove that

$$
x^{2} y+y^{2} z+z^{2} x \geq 2(x+y+z)-3
$$

and determine when equality holds.
UK - David Monk
2 A special number is a positive integer n for which there exists positive integers a, b, c, and d with

$$
n=\frac{a^{3}+2 b^{3}}{c^{3}+2 d^{3}} .
$$

Prove that
i) there are infinitely many special numbers;
ii) 2014 is not a special number.

Romania

3 Let $A B C D$ be a trapezium inscribed in a circle Γ with diameter $A B$. Let E be the intersection point of the diagonals $A C$ and $B D$. The circle with center B and radius $B E$ meets Γ at the points K and L (where K is on the same side of $A B$ as C). The line perpendicular to $B D$ at E intersects $C D$ at M. Prove that $K M$ is perpendicular to $D L$.

Greece - Silouanos Brazitikos

4 Let n be a positive integer. A regular hexagon with side length n is divided into equilateral triangles with side length 1 by lines parallel to its sides.
Find the number of regular hexagons all of whose vertices are among the vertices of those equilateral triangles.
UK - Sahl Khan

