

AoPS Community

Balkan MO 2014

www.artofproblemsolving.com/community/c4086 by shivangjindal, lfetahu

-	May 4th
1	Let x, y and z be positive real numbers such that $xy + yz + xz = 3xyz$. Prove that
	$x^2y + y^2z + z^2x \ge 2(x + y + z) - 3$
	and determine when equality holds.
	UK - David Monk
2	A <i>special number</i> is a positive integer n for which there exists positive integers a , b , c , and d with $n = \frac{a^3 + 2b^3}{c^3 + 2d^3}.$
	Prove that
	i) there are infinitely many special numbers; ii) 2014 is not a special number.
	Romania
3	Let $ABCD$ be a trapezium inscribed in a circle Γ with diameter AB . Let E be the intersection point of the diagonals AC and BD . The circle with center B and radius BE meets Γ at the points K and L (where K is on the same side of AB as C). The line perpendicular to BD at E intersects CD at M . Prove that KM is perpendicular to DL .
	Greece - Silouanos Brazitikos
4	Let n be a positive integer. A regular hexagon with side length n is divided into equilateral triangles with side length 1 by lines parallel to its sides. Find the number of regular hexagons all of whose vertices are among the vertices of those equilateral triangles.
	UK - Sahl Khan

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱