Art of Problem Solving

AoPS Community

Ukraine National Mathematical Olympiad 2009

www.artofproblemsolving.com/community/c4087
by Amir Hossein

- \quad Grade level 8

Day 1

1 Find all positive integer solutions of equation $n^{3}-2=k!$.
2 There is convex 2009-gon on the plane.
a) Find the greatest number of vertices of 2009 -gon such that no two forms the side of the polygon.
b) Find the greatest number of vertices of 2009-gon such that among any three of them there is one that is not connected with other two by side.

3 On the party every boy gave 1 candy to every girl and every girl gave 1 candy to every boy. Then every boy ate 2 candies and every girl ate 3 candies. It is known that $\frac{1}{4}$ of all candies was eaten. Find the greatest possible number of children on the party.

4 In the triangle $A B C$ given that $\angle A B C=120^{\circ}$. The bisector of $\angle B$ meet $A C$ at M and external bisector of $\angle B C A$ meet $A B$ at P. Segments $M P$ and $B C$ intersects at K. Prove that $\angle A K M=$ $\angle K P C$.

Day 2

1 Let a, b, c be integers satisfying $a b+b c+c a=1$. Prove that $\left(1+a^{2}\right)\left(1+b^{2}\right)\left(1+c^{2}\right)$ is a perfect square.

2 In acute-angled triangle $A B C$, let M be the midpoint of $B C$ and let K be a point on side $A B$. We know that $A M$ meet $C K$ at F. Prove that if $A K=K F$ then $A B=C F$.

3 Given 2009×4018 rectangular board. Frame is a rectangle $n \times n$ or $n \times(n+2)$ for ($n \geq 3$) without all cells which dont have any common points with boundary of rectangle. Rectangles $1 \times 1,1 \times 2,1 \times 3$ and 2×4 are also frames. Two players by turn paint all cells of some frame that has no painted cells yet. Player that can't make such move loses. Who has a winning strategy?
$4 \quad$) Prove that for any positive integer n there exist a pair of positive integers (m, k) such that

$$
k+m^{k}+n^{m^{k}}=2009^{n} .
$$

2009 Ukraine National Mathematical Olympiad

b) Prove that there are infinitely many positive integers n for which there is only one such pair.

- \quad Grade level 9

Day 1

1 Build the set of points (x, y) on coordinate plane, that satisfies equality:

$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=2-x^{2}-y^{2} .
$$

2 On the party every boy gave 1 candy to every girl and every girl gave 1 candy to every boy. Then every boy ate 2 candies and every girl ate 3 candies. It is known that $\frac{1}{4}$ of all candies was eaten. Find the greatest possible number of children on the party.

3 In triangle $A B C$ points M, N are midpoints of $B C, C A$ respectively. Point P is inside $A B C$ such that $\angle B A P=\angle P C A=\angle M A C$. Prove that $\angle P N A=\angle A M B$.
$4 \quad$ Let $x \leq y \leq z \leq t$ be real numbers such that $x y+x z+x t+y z+y t+z t=1$.
a) Prove that $x t<\frac{1}{3}$,
b) Find the least constant C for which inequality $x t<C$ holds for all possible values x and t.

Day 2

1 Pairwise distinct real numbers a, b, c satisfies the equality

$$
a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a} .
$$

Find all possible values of $a b c$.
$2 \quad$ Find all prime numbers p and positive integers m such that $2 p^{2}+p+9=m^{2}$.
3 Given 2009×4018 rectangular board. Frame is a rectangle $n \times n$ or $n \times(n+2)$ for $(n \geq 3)$ without all cells which dont have any common points with boundary of rectangle. Rectangles $1 \times 1,1 \times 2,1 \times 3$ and 2×4 are also frames. Two players by turn paint all cells of some frame that has no painted cells yet. Player that can't make such move loses. Who has a winning strategy?
$4 \quad$ In the trapezoid $A B C D$ we know that $C D \perp B C$, and $C D \perp A D$. Circle w with diameter $A B$ intersects $A D$ in points A and P, tangent from P to w intersects $C D$ at M. The second tangent from M to w touches w at Q. Prove that midpoint of $C D$ lies on $B Q$.

- \quad Grade level 10

Day 1

1 Compare the number of distinct prime divisors of $200^{2} \cdot 201^{2} \cdot \ldots \cdot 900^{2}$ and $\left(200^{2}-1\right)\left(201^{2}-\right.$ 1) $\cdot \ldots \cdot\left(900^{2}-1\right)$.

2 There is a knight in the left down corner of 2009×2009 chessboard. The row and the column containing this corner are painted. The knight cannot move into painted cell and after its move new row and column that contains a square with knight become painted. Is it possible to paint all rows and columns of the chessboard?

3 In triangle $A B C$ points M, N are midpoints of $B C, C A$ respectively. Point P is inside $A B C$ such that $\angle B A P=\angle P C A=\angle M A C$. Prove that $\angle P N A=\angle A M B$.
$4 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+x y+f(y))=\left(f(x)+\frac{1}{2}\right)\left(f(y)+\frac{1}{2}\right) \quad \forall x, y \in \mathbb{R} .
$$

Day 2

1 Pairwise distinct real numbers a, b, c satisfies the equality

$$
a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a} .
$$

Find all possible values of $a b c$.
$2 \quad$ Find all prime numbers p and positive integers m such that $2 p^{2}+p+9=m^{2}$.
3 Given a $n \times n$ square board. Two players by turn remove some side of unit square if this side is not a bound of $n \times n$ square board. The player lose if after his move $n \times n$ square board became broken into two parts. Who has a winning strategy?

4 Let $A B C D$ be a parallelogram with $\angle B A C=45^{\circ}$, and $A C>B D$. Let w_{1} and w_{2} be two circles with diameters $A C$ and $D C$, respectively. The circle w_{1} intersects $A B$ at E and the circle w_{2} intersects $A C$ at O and C, and $A D$ at F. Find the ratio of areas of triangles $A O E$ and $C O F$ if $A O=a$, and $F O=b$.

- \quad Grade level 11

Day 1

1 Find all possible real values of a for which the system of equations

$$
\left\{\begin{array}{c}
x+y+z=0 \\
x y+y z+a z x=0
\end{array}\right.
$$

has exactly one solution.
2 Let $M=\{1,2,3,4,6,8,12,16,24,48\}$. Find out which of four-element subsets of M are more: those with product of all elements greater than 2009 or those with product of all elements less than 2009.
$3 \quad$ In triangle $A B C$ let M and N be midpoints of $B C$ and $A C$, respectively. Point P is inside $A B C$ such that $\angle B A P=\angle P B C=\angle P C A$. Prove that if $\angle P N A=\angle A M B$, then $A B C$ is isosceles triangle.

4 Find all polynomials $P(x)$ with real coefficients such that for all pairwise distinct positive integers x, y, z, t with $x^{2}+y^{2}+z^{2}=2 t^{2}$ and $\operatorname{gcd}(x, y, z, t)=1$, the following equality holds

$$
2 P^{2}(t)+2 P(x y+y z+z x)=P^{2}(x+y+z) .
$$

Note. $P^{2}(k)=(P(k))^{2}$.

Day 2

1 Solve the system of equations

$$
\begin{aligned}
x^{3} & =2 y^{3}+y-2 \\
\left\{y^{3}\right. & =2 z^{3}+z-2 \\
z^{3} & =2 x^{3}+x-2
\end{aligned}
$$

2 Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(n|m|)+f(n(|m|+2))=2 f(n(|m|+1)) \quad \forall m, n \in \mathbb{Z} .
$$

Note. $|x|$ denotes the absolute value of the integer x.
3 Point O is inside triangle $A B C$ such that $\angle A O B=\angle B O C=\angle C O A=120^{\circ}$. Prove that

$$
\frac{A O^{2}}{B C}+\frac{B O^{2}}{C A}+\frac{C O^{2}}{A B} \geq \frac{A O+B O+C O}{\sqrt{3}}
$$

4 Let G be a connected graph, with degree of all vertices not less then $m \geq 3$, such that there is no path through all vertices of G being in every vertex exactly once. Find the least possible number of vertices of G.

