

2009 Ukraine National Mathematical Olympiad

Ukraine National Mathematical Olympiad 2009

www.artofproblemsolving.com/community/c4087

by Amir Hossein

- Grade level 8

Day 1	
1	Find all positive integer solutions of equation $n^3 - 2 = k!$.
2	There is convex 2009-gon on the plane.
	a) Find the greatest number of vertices of 2009-gon such that no two forms the side of the polygon.
	b) Find the greatest number of vertices of 2009-gon such that among any three of them there is one that is not connected with other two by side.
3	On the party every boy gave 1 candy to every girl and every girl gave 1 candy to every boy. The every boy ate 2 candies and every girl ate 3 candies. It is known that $\frac{1}{4}$ of all candies was eater Find the greatest possible number of children on the party.
4	In the triangle <i>ABC</i> given that $\angle ABC = 120^{\circ}$. The bisector of $\angle B$ meet <i>AC</i> at <i>M</i> and external bisector of $\angle BCA$ meet <i>AB</i> at <i>P</i> . Segments <i>MP</i> and <i>BC</i> intersects at <i>K</i> . Prove that $\angle AKM = \angle KPC$.
Day 2	
1	Let a, b, c be integers satisfying $ab + bc + ca = 1$. Prove that $(1 + a^2)(1 + b^2)(1 + c^2)$ is a perfect square.
2	In acute-angled triangle ABC , let M be the midpoint of BC and let K be a point on side AB . We know that AM meet CK at F . Prove that if $AK = KF$ then $AB = CF$.
3	Given 2009×4018 rectangular board. Frame is a rectangle $n \times n$ or $n \times (n + 2)$ for $(n \ge 3)$ without all cells which dont have any common points with boundary of rectangle. Rectangle $1 \times 1, 1 \times 2, 1 \times 3$ and 2×4 are also frames. Two players by turn paint all cells of some frame that has no painted cells yet. Player that can't make such move loses. Who has a winning strategy
4) Prove that for any positive integer \boldsymbol{n} there exist a pair of positive integers $(\boldsymbol{m},\boldsymbol{k})$ such that

$$k + m^k + n^{m^k} = 2009^n.$$

2009 Ukraine National Mathematical Olympiad

b) Prove that there are infinitely many positive integers *n* for which there is only one such pair.

-	Grade level 9
Day 1	
1	Build the set of points (x, y) on coordinate plane, that satisfies equality:
	$\sqrt{1-x^2} + \sqrt{1-y^2} = 2 - x^2 - y^2.$
2	On the party every boy gave 1 candy to every girl and every girl gave 1 candy to every boy. There every boy ate 2 candies and every girl ate 3 candies. It is known that $\frac{1}{4}$ of all candies was eaten Find the greatest possible number of children on the party.
3	In triangle <i>ABC</i> points <i>M</i> , <i>N</i> are midpoints of <i>BC</i> , <i>CA</i> respectively. Point <i>P</i> is inside <i>ABC</i> such that $\angle BAP = \angle PCA = \angle MAC$. Prove that $\angle PNA = \angle AMB$.
4	Let $x \le y \le z \le t$ be real numbers such that $xy + xz + xt + yz + yt + zt = 1$.
	a) Prove that $xt < \frac{1}{3}$,
	b) Find the least constant C for which inequality $xt < C$ holds for all possible values x and t .
Day 2	
1	Pairwise distinct real numbers a, b, c satisfies the equality
	$a + \frac{1}{b} = b + \frac{1}{c} = c + \frac{1}{a}.$
	Find all possible values of <i>abc</i> .
2	Find all prime numbers p and positive integers m such that $2p^2 + p + 9 = m^2$.
3	Given 2009×4018 rectangular board. Frame is a rectangle $n \times n$ or $n \times (n + 2)$ for $(n \ge 3)$ without all cells which dont have any common points with boundary of rectangle. Rectangles $1 \times 1, 1 \times 2, 1 \times 3$ and 2×4 are also frames. Two players by turn paint all cells of some frame that has no painted cells yet. Player that can't make such move loses. Who has a winning strategy?
4	In the trapezoid $ABCD$ we know that $CD \perp BC$, and $CD \perp AD$. Circle w with diameter AB intersects AD in points A and P , tangent from P to w intersects CD at M . The second tangent from M to w touches w at Q . Prove that midpoint of CD lies on BQ .

- Grade level 10

Day 1

- **1** Compare the number of distinct prime divisors of $200^2 \cdot 201^2 \cdot ... \cdot 900^2$ and $(200^2 1)(201^2 1) \cdot ... \cdot (900^2 1)$.
- 2 There is a knight in the left down corner of 2009×2009 chessboard. The row and the column containing this corner are painted. The knight cannot move into painted cell and after its move new row and column that contains a square with knight become painted. Is it possible to paint all rows and columns of the chessboard?
- **3** In triangle *ABC* points *M*, *N* are midpoints of *BC*, *CA* respectively. Point *P* is inside *ABC* such that $\angle BAP = \angle PCA = \angle MAC$. Prove that $\angle PNA = \angle AMB$.
- **4** Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x + xy + f(y)) = \left(f(x) + \frac{1}{2}\right) \left(f(y) + \frac{1}{2}\right) \qquad \forall x, y \in \mathbb{R}.$$

Day 2

1 Pairwise distinct real numbers *a*, *b*, *c* satisfies the equality

$$a + \frac{1}{b} = b + \frac{1}{c} = c + \frac{1}{a}.$$

Find all possible values of *abc*.

- **2** Find all prime numbers p and positive integers m such that $2p^2 + p + 9 = m^2$.
- **3** Given a $n \times n$ square board. Two players by turn remove some side of unit square if this side is not a bound of $n \times n$ square board. The player lose if after his move $n \times n$ square board became broken into two parts. Who has a winning strategy?
- 4 Let ABCD be a parallelogram with $\angle BAC = 45^{\circ}$, and AC > BD. Let w_1 and w_2 be two circles with diameters AC and DC, respectively. The circle w_1 intersects AB at E and the circle w_2 intersects AC at O and C, and AD at F. Find the ratio of areas of triangles AOE and COF if AO = a, and FO = b.

- Grade level 11

Day 1

1 Find all possible real values of *a* for which the system of equations

$$x + y + z = 0$$

$$\begin{cases}
xy + yz + azx = 0
\end{cases}$$

has exactly one solution.

- **2** Let $M = \{1, 2, 3, 4, 6, 8, 12, 16, 24, 48\}$. Find out which of four-element subsets of M are more: those with product of all elements greater than 2009 or those with product of all elements less than 2009.
- **3** In triangle *ABC* let *M* and *N* be midpoints of *BC* and *AC*, respectively. Point *P* is inside *ABC* such that $\angle BAP = \angle PBC = \angle PCA$. Prove that if $\angle PNA = \angle AMB$, then *ABC* is isosceles triangle.
- **4** Find all polynomials P(x) with real coefficients such that for all pairwise distinct positive integers x, y, z, t with $x^2 + y^2 + z^2 = 2t^2$ and gcd(x, y, z, t) = 1, the following equality holds

$$2P^{2}(t) + 2P(xy + yz + zx) = P^{2}(x + y + z).$$

Note. $P^2(k) = (P(k))^2$.

Day 2

1 Solve the system of equations

{
$$y^3 = 2z^3 + z - 2$$

 $z^3 = 2x^3 + x - 2$

 $x^3 = 2y^3 + y - 2$

2 Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that

$$f(n|m|) + f(n(|m|+2)) = 2f(n(|m|+1)) \quad \forall m, n \in \mathbb{Z}.$$

Note. |x| denotes the absolute value of the integer x.

3 Point *O* is inside triangle *ABC* such that $\angle AOB = \angle BOC = \angle COA = 120^{\circ}$. Prove that $\frac{AO^2}{BC} + \frac{BO^2}{CA} + \frac{CO^2}{AB} \ge \frac{AO + BO + CO}{\sqrt{3}}.$

2009 Ukraine National Mathematical Olympiad

4 Let *G* be a connected graph, with degree of all vertices not less then $m \ge 3$, such that there is no path through all vertices of *G* being in every vertex exactly once. Find the least possible number of vertices of *G*.

Act of Problem Solving is an ACS WASC Accredited School.