

AoPS Community

2014 Ukraine National Mathematical Olympiad

Ukraine National Mathematical Olympiad 2014

www.artofproblemsolving.com/community/c4088 by hajimbrak

-	Grade level 8
_	Grade level 9
-	Grade level 10
Day 1	
1	Suppose that for real x, y, z, t the following equalities hold: $\{x+y+z\} = \{y+z+t\} = \{z+t+x\} = \{t+x+y\} = 1/4$. Find all possible values of $\{x+y+z+t\}$. (Here $\{x\} = x - [x]$)
2	Let <i>M</i> be the midpoint of the side <i>BC</i> of $\triangle ABC$. On the side <i>AB</i> and <i>AC</i> the points <i>E</i> and <i>F</i> are chosen. Let <i>K</i> be the point of the intersection of <i>BF</i> and <i>CE</i> and <i>L</i> be chosen in a way that <i>CL</i> \parallel <i>AB</i> and <i>BL</i> \parallel <i>CE</i> . Let <i>N</i> be the point of intersection of <i>AM</i> and <i>CL</i> . Show that <i>KN</i> is parallel to <i>FL</i> . Edit :Fixed typographical error.
3	It is known that for natural numbers a, b, c, d and n the following inequalities hold: $a + c < n$ and $a/b + c/d < 1$. Prove that $a/b + c/d < 1 - 1/n^3$.
4	There are 100 cards with numbers from 1 to 100 on the table. Andriy and Nick took the same number of cards in a way such that the following condition holds: if Andriy has a card with a number n then Nick has a card with a number $2n + 2$. What is the maximal number of cards that could be taken by the two guys?
Day 2	
1	Find the values of x such that the following inequality holds: $\min\{\sin x, \cos x\} < \min\{1 - \sin x, 1 - \cos x\}$
2	Find all pairs of prime numbers p and q that satisfy the equation $3p^q - 2q^{p-1} = 19$.
3	Is it possible to choose 24 points in the space, such that no three of them lie on the same line and choose 2013 planes in such a way that each plane passes through at least 3 of the chosen points and each triple of points belongs to at least one of the chosen planes?

AoPS Community

2014 Ukraine National Mathematical Olympiad

4 Let *M* be the midpoint of the internal bisector *AD* of $\triangle ABC$. Circle ω_1 with diameter *AC* intersects *BM* at *E* and circle ω_2 with diameter *AB* intersects *CM* at *F*. Show that *B*, *E*, *F*, *C* are concyclic.

Grade level 11

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.