Art of Problem Solving

AoPS Community

NIMO Problems 2015

www.artofproblemsolving.com/community/c4093
by djmathman, Binomial-theorem

Day 17 January 22nd
1 Let $2000<N<2100$ be an integer. Suppose the last day of year N is a Tuesday while the first day of year $N+2$ is a Friday. The fourth Sunday of year $N+3$ is the m th day of January. What is m ?

Based on a proposal by Neelabh Deka
2 Let $A B C D$ be a square with side length 100 . Denote by M the midpoint of $A B$. Point P is selected inside the square so that $M P=50$ and $P C=100$. Compute $A P^{2}$.

Based on a proposal by Amogh Gaitonde
3 How many 5-digit numbers N (in base 10) contain no digits greater than 3 and satisfy the equality $\operatorname{gcd}(N, 15)=\operatorname{gcd}(N, 20)=1$? (The leading digit of N cannot be zero.)

Based on a proposal by Yannick Yao
4 Determine the number of positive integers $a \leq 250$ for which the set $\{a+1, a+2, \ldots, a+1000\}$ contains

- Exactly 333 multiples of 3 , • Exactly 142 multiples of 7 , and • Exactly 91 multiples of 11 .

Based on a proposal by Rajiv Movva
5 Let a, b, c, d, e, and f be real numbers. Define the polynomials

$$
P(x)=2 x^{4}-26 x^{3}+a x^{2}+b x+c \quad \text { and } \quad Q(x)=5 x^{4}-80 x^{3}+d x^{2}+e x+f .
$$

Let S be the set of all complex numbers which are a root of either P or Q (or both). Given that $S=\{1,2,3,4,5\}$, compute $P(6) \cdot Q(6)$.
Proposed by Michael Tang
6 Let $\triangle A B C$ be a triangle with $B C=4, C A=5, A B=6$, and let O be the circumcenter of $\triangle A B C$. Let O_{b} and O_{c} be the reflections of O about lines $C A$ and $A B$ respectively. Suppose $B O_{b}$ and $C O_{c}$ intersect at T, and let M be the midpoint of $B C$. Given that $M T^{2}=\frac{p}{q}$ for some coprime positive integers p and q, find $p+q$.
Proposed by Sreejato Bhattacharya

7 Find the number of ways a series of + and - signs can be inserted between the numbers $0,1,2, \cdots, 12$ such that the value of the resulting expression is divisible by 5.
Proposed by Matthew Lerner-Brecher
8 For an integer $30 \leq k \leq 70$, let M be the maximum possible value of

$$
\frac{A}{\operatorname{gcd}(A, B)} \quad \text { where } A=\binom{100}{k} \text { and } B=\binom{100}{k+3}
$$

Find the remainder when M is divided by 1000 .
Based on a proposal by Michael Tang
Day 18 March 22nd
1 A function f from the positive integers to the nonnegative integers is defined recursively by $f(1)=0$ and $f(n+1)=2^{f(n)}$ for every positive integer n. What is the smallest n such that $f(n)$ exceeds the number of atoms in the observable universe (approximately 10^{80})?

Proposed by Evan Chen
2 There exists a unique strictly increasing arithmetic sequence $\left\{a_{i}\right\}_{i=1}^{100}$ of positive integers such that

$$
a_{1}+a_{4}+a_{9}+\cdots+a_{100}=1000
$$

where the summation runs over all terms of the form $a_{i^{2}}$ for $1 \leq i \leq 10$. Find a_{50}. Proposed by David Altizio and Tony Kim

3 Let $A B C D$ be a rectangle with $A B=6$ and $B C=6 \sqrt{3}$. We construct four semicircles ω_{1}, $\omega_{2}, \omega_{3}, \omega_{4}$ whose diameters are the segments $A B, B C, C D, D A$. It is given that ω_{i} and ω_{i+1} intersect at some point X_{i} in the interior of $A B C D$ for every $i=1,2,3,4$ (indices taken modulo 4). Compute the square of the area of $X_{1} X_{2} X_{3} X_{4}$.

Proposed by Evan Chen

4 Find the sum of all positive integers $1 \leq k \leq 99$ such that there exist positive integers a and b with the property that

$$
x^{100}-a x^{k}+b=\left(x^{2}-2 x+1\right) P(x)
$$

for some polynomial P with integer coefficients.

Proposed by David Altizio

5 Compute the number of subsets S of $\{0,1, \ldots, 14\}$ with the property that for each $n=0,1, \ldots, 6$, either n is in S or both of $2 n+1$ and $2 n+2$ are in S.

Proposed by Evan Chen

6 Let $A B C$ be a triangle with $A B=5, B C=7$, and $C A=8$. Let D be a point on $B C$, and define points B^{\prime} and C^{\prime} on line $A D$ (or its extension) such that $B B^{\prime} \perp A D$ and $C C^{\prime} \perp A D$. If $B^{\prime} A=B^{\prime} C^{\prime}$, then the ratio $B D: D C$ can be expressed in the form $m: n$, where m and n are relatively prime positive integers. Compute $100 m+n$.
Proposed by Michael Ren
7 In a 4×4 grid of unit squares, five squares are chosen at random. The probability that no two chosen squares share a side is $\frac{m}{n}$ for positive relatively prime integers m and n. Find $m+n$.

Proposed by David Altizio

8 Let $A B C$ be a non-degenerate triangle with incenter I and circumcircle Γ. Denote by M_{a} the midpoint of the arc $\widehat{B C}$ of Γ not containing A, and define M_{b}, M_{c} similarly. Suppose $\triangle A B C$ has inradius 4 and circumradius 9 . Compute the maximum possible value of

$$
I M_{a}^{2}+I M_{b}^{2}+I M_{c}^{2}
$$

Proposed by David Altizio

Day 19 May 19th

1 Let Ω_{1} and Ω_{2} be two circles in the plane. Suppose the common external tangent to Ω_{1} and Ω_{2} has length 2017 while their common internal tangent has length 2009. Find the product of the radii of Ω_{1} and Ω_{2}.
Proposed by David Altizio
2 Consider the set S of the eight points (x, y) in the Cartesian plane satisfying $x, y \in\{-1,0,1\}$ and $(x, y) \neq(0,0)$. How many ways are there to draw four segments whose endpoints lie in S such that no two segments intersect, even at endpoints?
Proposed by Evan Chen
3 Let O, A, B, and C be points in space such that $\angle A O B=60^{\circ}, \angle B O C=90^{\circ}$, and $\angle C O A=120^{\circ}$. Let θ be the acute angle between planes $A O B$ and $A O C$. Given that $\cos ^{2} \theta=\frac{m}{n}$ for relatively prime positive integers m and n, compute $100 m+n$.
Proposed by Michael Ren
4 Let $A_{0} A_{1} \ldots A_{11}$ be a regular 12-gon inscribed in a circle with diameter 1. For how many subsets $S \subseteq\{1, \ldots, 11\}$ is the product

$$
\prod_{s \in S} A_{0} A_{s}
$$

equal to a rational number? (The empty product is declared to be 1.)
Proposed by Evan Chen
5 Let a, b, c be positive integers and p be a prime number. Assume that

$$
a^{n}(b+c)+b^{n}(a+c)+c^{n}(a+b) \equiv 8 \quad(\bmod p)
$$

for each nonnegative integer n. Let m be the remainder when $a^{p}+b^{p}+c^{p}$ is divided by p, and k the remainder when m^{p} is divided by p^{4}. Find the maximum possible value of k.

Proposed by Justin Stevens and Evan Chen

