Art of Problem Solving

AoPS Community

Kosovo National Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c4094
by Obel1x, Iris Aliaj

- \quad Grade 9

1 Let $x=\left(1+\frac{1}{n}\right)^{n}$ and $y=\left(1+\frac{1}{n}\right)^{n+1}$ where $n \in \mathbb{N}$. Which one of the numbers x^{y}, y^{x} is bigger ?

2 It is given the function $f:(\mathbb{R}-\{0\}) \rightarrow \mathbb{R}$ such that $f(x)=x+\frac{1}{x}$. Is this function injective? Justify your answer.

3 A little boy wrote the numbers $1,2, \cdots, 2011$ on a blackboard. He picks any two numbers x, y, erases them with a sponge and writes the number $|x-y|$. This process continues until only one number is left. Prove that the number left is even.

4 In triangle $A B C$ medians of triangle $B E$ and $A D$ are perpendicular to each other. Find the length of $\overline{A B}$, if $\overline{B C}=6$ and $\overline{A C}=8$
$5 \quad$ Let $n>1$ be an integer and S_{n} the set of all permutations $\pi:\{1,2, \cdots, n\} \rightarrow\{1,2, \cdots, n\}$ where π is bijective function. For every permutation $\pi \in S_{n}$ we define:

$$
F(\pi)=\sum_{k=1}^{n}|k-\pi(k)| \text { and } M_{n}=\frac{1}{n!} \sum_{\pi \in S_{n}} F(\pi)
$$

where M_{n} is taken with all permutations $\pi \in S_{n}$. Calculate the sum M_{n}.

- \quad Grade 10

1 Suppose that the roots p, q of the equation $x^{2}-x+c=0$ where $c \in \mathbb{R}$, are rational numbers. Prove that the roots of the equation $x^{2}+p x-q=0$ are also rational numbers.

2 Find all solutions to the equation:

$$
\left(\left\lfloor x+\frac{7}{3}\right\rfloor\right)^{2}-\left\lfloor x-\frac{9}{4}\right\rfloor=16
$$

3 Prove that the following inequality holds:

$$
\left(\log _{24} 48\right)^{2}+\left(\log _{12} 54\right)^{2}>4
$$

4 Let a, b, c be the sides of a triangle, and S its area. Prove:

$$
a^{2}+b^{2}+c^{2} \geq 4 S \sqrt{3}
$$

In what case does equality hold?
$5 \quad$ Let $n>1$ be an integer and S_{n} the set of all permutations $\pi:\{1,2, \cdots, n\} \rightarrow\{1,2, \cdots, n\}$ where π is bijective function. For every permutation $\pi \in S_{n}$ we define:

$$
F(\pi)=\sum_{k=1}^{n}|k-\pi(k)| \text { and } M_{n}=\frac{1}{n!} \sum_{\pi \in S_{n}} F(\pi)
$$

where M_{n} is taken with all permutations $\pi \in S_{n}$. Calculate the sum M_{n}.

- \quad Grade 11

1 It is given the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that it holds $f(\sin x)=\sin (2011 x)$. Find the value of $f(\cos x)$.

2 Is it possible that by using the following transformations:

$$
f(x) \mapsto x^{2} \cdot f\left(\frac{1}{x}+1\right) \quad \text { or } \quad f(x) \mapsto(x-1)^{2} \cdot f\left(\frac{1}{x-1}\right)
$$

the function $f(x)=x^{2}+5 x+4$ is sent to the function $g(x)=x^{2}+10 x+8$?
3 Find maximal value of the function $f(x)=8-3 \sin ^{2}(3 x)+6 \sin (6 x)$
4 A point P is given in the square $A B C D$ such that $\overline{P A}=3, \overline{P B}=7$ and $\overline{P D}=5$. Find the area of the square.
$5 \quad$ Let $n>1$ be an integer and S_{n} the set of all permutations $\pi:\{1,2, \cdots, n\} \rightarrow\{1,2, \cdots, n\}$ where π is bijective function. For every permutation $\pi \in S_{n}$ we define:

$$
F(\pi)=\sum_{k=1}^{n}|k-\pi(k)| \text { and } M_{n}=\frac{1}{n!} \sum_{\pi \in S_{n}} F(\pi)
$$

where M_{n} is taken with all permutations $\pi \in S_{n}$. Calculate the sum M_{n}.

- \quad Grade 12

1 The complex numbers z_{1} and z_{2} are given such that $z_{1}=-1+i$ and $z_{2}=2+4 i$. Find the complex number z_{3} such that z_{1}, z_{2}, z_{3} are the points of an equilateral triangle. How many solutions do we have?

2 It is given the function $f:(\mathbb{R}-\{0\}) \times(\mathbb{R}-\{0\}) \rightarrow \mathbb{R}$ such that $f(a, b)=\left|\frac{|b-a|}{|a b|}+\frac{b+a}{a b}-1\right|+$ $\frac{|b-a|}{|a b|}+\frac{b+a}{a b}+1$ where $a, b \neq 0$. Prove that:

$$
f(a, b)=4 \cdot \max \left\{\frac{1}{a}, \frac{1}{b}, \frac{1}{2}\right\}
$$

3 If a, b, c are real positive numbers prove that the inequality holds:

$$
\frac{\sqrt{a^{3}+b^{3}}}{a^{2}+b^{2}}+\frac{\sqrt{b^{3}+c^{3}}}{b^{2}+c^{2}}+\frac{\sqrt{c^{3}+a^{3}}}{c^{2}+a^{2}} \geq \frac{6(a b+b c+a c)}{(a+b+c) \sqrt{(a+b)(b+c)(c+a)}}
$$

4 It is given a convex hexagon $A_{1} A_{2} \cdots A_{6}$ such that all its interior angles are same valued (congruent). Denote by $a_{1}=\overline{A_{1} A_{2}}, a_{2}=\overline{A_{2} A_{3}}, \cdots, a_{6}=\overline{A_{6} A_{1}}$.
a) Prove that holds: $a_{1}-a_{4}=a_{2}-a_{5}=a_{3}-a_{6} b$) Prove that if $a_{1}, a_{2}, a_{3}, \ldots, a_{6}$ satisfy the above equation, we can construct a convex hexagon with its same-valued (congruent) interior angles.
$5 \quad$ Let $n>1$ be an integer and S_{n} the set of all permutations $\pi:\{1,2, \cdots, n\} \rightarrow\{1,2, \cdots, n\}$ where π is bijective function. For every permutation $\pi \in S_{n}$ we define:

$$
F(\pi)=\sum_{k=1}^{n}|k-\pi(k)| \text { and } M_{n}=\frac{1}{n!} \sum_{\pi \in S_{n}} F(\pi)
$$

where M_{n} is taken with all permutations $\pi \in S_{n}$. Calculate the sum M_{n}.

