Art of Problem Solving

AoPS Community

Kosovo National Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c4095
by dangerousliri

- \quad Grade level 9

1 Prove that:

$$
\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{2}+\sqrt{3}+\sqrt{5}
$$

$2 \quad$ Find all integer n such that $n-5$ divide $n^{2}+n-27$.
3 For all real numbers a prove that $3\left(a^{4}+a^{2}+1\right) \geq\left(a^{2}+a+1\right)^{2}$
4 Find all value of parameter a such that equations $x^{2}-a x+1=0$ and $x^{2}-x+a=0$ have at least one same solution.
For this value a find same solution of this equations(real or imaginary).
5 Let $A B C$ be an equilateral triangle, with sidelength equal to a. Let P be a point in the interior of triangle $A B C$, and let D, E and F be the feet of the altitudes from P on $A B, B C$ and $C A$, respectively. Prove that $\frac{|P D|+|P E|+|P F|}{3 a}=\frac{\sqrt{3}}{6}$

- \quad Grade level 10

1 Let be a, b real numbers such that $|a| \neq|b|$ and $\frac{a+b}{a-b}+\frac{a-b}{a+b}=6$.
Calculate:
$\frac{a^{3}+b^{3}}{a^{3}-b^{3}}+\frac{a^{3}-b^{3}}{a^{3}+b^{3}}$
2 Three numbers have sum k (where $k \in \mathbb{R}$) such that the numbers are arethmetic progression. If First of two numbers remain the same and to the third number we add $\frac{k}{6}$ than we have geometry progression.
Find those numbers?
3 How many positive integers which are less or equal with 2013 such that 3 or 5 divide the number.

4 Let be n positive integer than calculate:
$1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!$
$5 \quad$ Let P be a point inside or outside (but not on) of a triangle $A B C$. Prove that $P A+P B+P C$ is greater than half of the perimeter of the triangle

- \quad Grade level 11

1 Let be z_{1} and z_{2} two complex numbers such that $\left|z_{1}+2 z_{2}\right|=\left|2 z_{1}+z_{2}\right|$.Prove that for all real numbers a is true $\left|z_{1}+a z_{2}\right|=\left|a z_{1}+z_{2}\right|$

2 Solve equation $27 \cdot 3^{3 \sin x}=9^{\cos ^{2} x}$ where $x \in[0,2 \pi)$
3 Prove that solution of equation $y=x^{2}+a x+b$ and $x=y^{2}+c y+d$ it belong a circle.
4 Let be a, b, c three positive integer.Prove that 4 divide $a^{2}+b^{2}+c^{2}$ only and only if a, b, c are even.

5 Let $A B C D$ be a convex quadrilateral with perpendicular diagonals. Assume that $A B C D$ has been inscribed in the circle with center O. Prove that $A O C$ separates $A B C D$ into two quadrilaterals of equal area

- \quad Grade level 12
$1 \quad$ Which number is bigger $\sqrt[2012]{2012!}$ or $\sqrt[2013]{2013!}$.
2 Math teacher wrote in a table a polynomial $P(x)$ with integer coefficients and he said:
"Today my daughter have a birthday. If in polynomial $P(x)$ we have $x=a$ where a is the age of my daughter we have $P(a)=a$ and $P(0)=p$ where p is a prime number such that $p>a$." How old is the daughter of math teacher?

3 Find all numbers x such that:

$$
1+2 \cdot 2^{x}+3 \cdot 3^{x}<6^{x}
$$

4 Calculate: $\sqrt{3 \sqrt{5 \sqrt{3 \sqrt{5 \ldots}}}}$
$5 \quad$ A trapezium has parallel sides of length equal to a and $b(a<b)$, and the distance between the parallel sides is the altitude h. The extensions of the non-parallel lines intersect at a point that is a vertex of two triangles that have as sides the parallel sides of the trapezium. Express the areas of the triangles as functions of a, b and h.

