AoPS Community

Final Round - Switzerland 2010

www.artofproblemsolving.com/community/c4096 by Martin N .

1 Three coins lie on integer points on the number line. A move consists of choosing and moving two coins, the first one 1 unit to the right and the second one 1 unit to the left. Under which initial conditions is it possible to move all coins to one single point?

2 Let $\triangle A B C$ be a triangle with $A B \neq A C$. The incircle with centre I touches $B C, C A, A B$ at D, E, F, respectively. Furthermore let M the midpoint of $E F$ and $A D$ intersect the incircle at $P \neq D$.
Show that PMID ist cyclic.
3 For $n \in \mathbb{N}$, determine the number of natural solutions (a, b) such that

$$
(4 a-b)(4 b-a)=2010^{n}
$$

holds.
4 Let $x, y, z \in \mathbb{R}^{+}$satisfying $x y z=1$. Prove that

$$
\frac{(x+y-1)^{2}}{z}+\frac{(y+z-1)^{2}}{x}+\frac{(z+x-1)^{2}}{y} \geqslant x+y+z .
$$

5 Some sides and diagonals of a regular n-gon form a connected path that visits each vertex exactly once. A parallel pair of edges is a pair of two different parallel edges of the path. Prove that
(a) if n is even, there is at least one parallel pair.
(b) if n is odd, there can't be one single parallel pair.

6 Find all functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

$$
f(f(x))+f(f(y))=2 y+f(x-y)
$$

holds.
$7 \quad$ Let m, n be natural numbers such that $m+n+1$ is prime and divides $2\left(m^{2}+n^{2}\right)-1$.
Prove that $m=n$.
8 In a village with at least one inhabitant, there are several associations. Each inhabitant is a member of at least k associations, and any two associations have at most one common member.
Prove that at least k associations have the same number of members.
$9 \quad$ Let k and k^{\prime} two concentric circles centered at O, with k^{\prime} being larger than k. A line through O intersects k at A and k^{\prime} at B such that O seperates A and B. Another line through O intersects k at E and k^{\prime} at F such that E separates O and F.
Show that the circumcircle of $\triangle O A E$ and the circles with diametres $A B$ and $E F$ have a common point.

10 Let $n \geqslant 3$ and P a convex n-gon. Show that P can be, by $n-3$ non-intersecting diagonals, partitioned in triangles such that the circumcircle of each triangle contains the whole area of P. Under which conditions is there exactly one such triangulation?

