Art of Problem Solving

AoPS Community

Kyrgyzstan National Olympiad 2009

www.artofproblemsolving.com/community/c4098
by theSA
$1 a, b, c$ are sides of triangle $A B C$. For any choosen triple from $(a+1, b, c),(a, b+1, c),(a, b, c+1)$ there exist a triangle which sides are choosen triple. Find all possible values of area which triangle $A B C$ can take.
$2 \quad x$ and y are real numbers. A) If it is known that $x+y$ and $x+y^{2}$ are rational numbers, can we conclude that x and y are also rational numbers. B) If it is known that $x+y, x+y^{2}$ and $x+y^{3}$ are rational numbers, can we conclude that x and y are also rational numbers.

3 For function $f: \mathbb{R} \rightarrow \mathbb{R}$ given that $f\left(x^{2}+x+3\right)+2 \cdot f\left(x^{2}-3 x+5\right)=6 x^{2}-10 x+17$, calculate $f(2009)$.

4 Find all real (x, y) such that $x+y^{2}=y^{3} y+x^{2}=x^{3}$
$5 \quad$ Prove for all natural n that $40^{n} \cdot n!\mid(5 n)$!
$6 \quad$ Find all natural a, b such that $a(a+b)+1 \mid(a+b)(b+1)-1$.
7 Does $a^{2}+b^{2}+c^{2} \leqslant 2(a b+b c+c a)$ hold for every a, b, c if it is known that $a^{4}+b^{4}+c^{4} \leqslant$ $2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)$.
$8 \quad$ Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(n-1))=f(n+1)-f(n)$ for all $n>2$.
$9 \quad$ For any positive $a_{1}, a_{2}, \ldots, a_{n}$ prove that $\frac{a_{1}}{a_{2}+a_{3}}+\frac{a_{2}}{a_{3}+a_{4}}+\ldots+\frac{a_{n}}{a_{1}+a_{2}}>\frac{n}{4}$ holds.

