AoPS Community

Kyrgyzstan National Olympiad 2010

www.artofproblemsolving.com/community/c4099
by louaar, theSA

1 Given that $a, b, c>0$ and $a+b+c=1$. Prove that $\sqrt{\frac{a b}{a b+c}}+\sqrt{\frac{b c}{b c+a}}+\sqrt{\frac{c a}{c a+b}} \leqslant \frac{3}{2}$.
2 Fifteen pairwise coprime positive integers chosen so that each of them less than 2010. Show that at least one of them is prime.

3 At the meeting, each person is familiar with 22 people. If two persons A and B know each with one another, among the remaining people they do not have a common friend. For each pair individuals A and B are not familiar with each other, there are among the remaining six common acquaintances. How many people were at the meeting?

4 Point O is chosen in a triangle $A B C$ such that d_{a}, d_{b}, d_{c} are distance from point O to sides $B C, C A, A B$, respectively. Find position of point O so that product $d_{a} \cdot d_{b} \cdot d_{c}$ becomes maximum.
$5 \quad$ Let k be a constant number larger than 1. Find all polynomials $P(x)$ such that $P\left(x^{k}\right)=(P(x))^{k}$ for all real x.

6 Let p-a prime, where $p>11$. Prove that there exists a number k such that the product $p \cdot k$ can be written in the decimal system with only ones.
$7 \quad$ Find all natural triples (a, b, c), such that: $a-) a \leq b \leq c b-)(a, b, c)=1 c-) a^{2} b \mid a^{3}+b^{3}+$ $c^{3}, b^{2} c\left|a^{3}+b^{3}+c^{3}, c^{2} a\right| a^{3}+b^{3}+c^{3}$.
$8 \quad$ Solve in none-negative integers $x^{3}+7 x^{2}+35 x+27=y^{3}$.

