

AoPS Community

Kyrgyzstan National Olympiad 2010

www.artofproblemsolving.com/community/c4099 by louaar, theSA

1	Given that $a, b, c > 0$ and $a + b + c = 1$. Prove that $\sqrt{\frac{ab}{ab+c}} + \sqrt{\frac{bc}{bc+a}} + \sqrt{\frac{ca}{ca+b}} \leqslant \frac{3}{2}$.
2	Fifteen pairwise coprime positive integers chosen so that each of them less than 2010. Show that at least one of them is prime.
3	At the meeting, each person is familiar with 22 people. If two persons A and B know each with one another, among the remaining people they do not have a common friend. For each pair individuals A and B are not familiar with each other, there are among the remaining six common acquaintances. How many people were at the meeting?
4	Point <i>O</i> is chosen in a triangle <i>ABC</i> such that d_a, d_b, d_c are distance from point <i>O</i> to sides <i>BC</i> , <i>CA</i> , <i>AB</i> , respectively. Find position of point <i>O</i> so that product $d_a \cdot d_b \cdot d_c$ becomes maximum.
5	Let k be a constant number larger than 1. Find all polynomials $P(x)$ such that $P(x^k) = (P(x))^k$ for all real x.
6	Let p - a prime, where $p > 11$. Prove that there exists a number k such that the product $p \cdot k$ can be written in the decimal system with only ones.
7	Find all natural triples (a, b, c) , such that: $a-)a \le b \le cb-)(a, b, c) = 1c-)a^{2}b a^{3} + b^{3} + c^{3}, b^{2}c a^{3} + b^{3} + c^{3}, c^{2}a a^{3} + b^{3} + c^{3}$.

- Solve in none-negative integers $x^3 + 7x^2 + 35x + 27 = y^3$. 8

🐼 AoPS Online 🐼 AoPS Academy 🔯 AoPS 🕬