AoPS Community

Kyrgyzstan National Olympiad 2011

www.artofproblemsolving.com/community/c4100 by theSA

1 For a given chord $M N$ of a circle discussed the triangle $A B C$, whose base is the diameter $A B$ of this circle, which do not intersect the $M N$, and the sides $A C$ and $B C$ pass through the ends of M and N of the chord $M N$. Prove that the heights of all such triangles $A B C$ drawn from the vertex C to the side $A B$, intersect at one point.

2 In a convex n-gon all angles are equal from a certain point, located inside the n-gon, all its sides are seen under equal angles. Can we conclude that this n-gon is regular?

3 Given positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{1}+a_{2}+\ldots+a_{n}=1$. Prove that $\left(\frac{1}{a_{1}^{2}}-1\right)\left(\frac{1}{a_{2}^{2}}-1\right) \ldots\left(\frac{1}{a_{n}^{2}}-1\right) \geqslant$ $\left(n^{2}-1\right)^{n}$.

4 Given equation $a^{5}-a^{3}+a=2$, with real a. Prove that $3<a^{6}<4$.
5 Points M and N are chosen on sides $A B$ and $B C$, respectively, in a triangle $A B C$, such that point O is interserction of lines $C M$ and $A N$. Given that $A M+A N=C M+C N$. Prove that $A O+A B=C O+C B$.

6 a) Among the 21 pairwise distances between the 7 points of the plane, prove that one and the same number occurs not more than 12 times.
b) Find a maximum number of times may meet the same number among the 15 pairwise distances between 6 points of the plane.

7 Given that $g(n)=\frac{1}{2+\frac{1}{3+\frac{1}{\cdots+\frac{1}{n-1}}}}$ and $k(n)=\frac{1}{2+\frac{1}{3+\cdots+\frac{1}{n-1+\frac{1}{n}}}}$, for natural n. Prove that $|g(n)-k(n)| \leq$ $\frac{1}{(n-1)!n!}$.

8 Given a sequence $x_{1}, x_{2}, \ldots, x_{n}$ of real numbers with $x_{n+1}{ }^{3}=x_{n}{ }^{3}-3 x_{n}{ }^{2}+3 x_{n}$, where ($n=$ $1,2,3, \ldots)$. What must be value of x_{1}, so that x_{100} and x_{1000} becomes equal?

