AoPS Community

Kyrgyzstan National Olympiad 2012

www.artofproblemsolving.com/community/c4101
by v_Enhance

1 Prove that n must be prime in order to have only one solution to the equation $\frac{1}{x}-\frac{1}{y}=\frac{1}{n}$, $x, y \in \mathbb{N}$.

2 Given positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{1}+a_{2}+\ldots+a_{n}=1$. Prove that $\left(\frac{1}{a_{1}^{2}}-1\right)\left(\frac{1}{a_{2}^{2}}-1\right) \ldots\left(\frac{1}{a_{n}^{2}}-1\right)$ $\left(n^{2}-1\right)^{n}$.

3 Prove that if the diagonals of a convex quadrilateral are perpendicular, then the feet of perpendiculars dropped from the intersection point of diagonals on the sides of this quadrilateral lie on one circle. Is the converse true?

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(f(x)^{2}+f(y)\right)=x f(x)+y, \forall x, y \in R$.
5 The sequence of natural numbers is defined as follows: for any $k \geq 1, a_{k+2}=a_{k+1} \cdot a_{k}+1$. Prove that for $k \geq 9$ the number $a_{k}-22$ is composite.

6 The numbers $1,2, \ldots, 50$ are written on a blackboard. Each minute any two numbers are erased and their positive difference is written instead. At the end one number remains. Which values can take this number?

