

Morocco National Olympiad 2011

www.artofproblemsolving.com/community/c4105 by momo1729, Potla, Agung, mavropnevma

n

1 Solve the following equation in \mathbb{R}^+ :

$$\begin{cases} \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2010\\ x + y + z = \frac{3}{670} \end{cases}$$

- 2 Solve in \mathbb{R} the equation : $(x+1)^5 + (x+1)^4(x-1) + (x+1)^3(x-1)^2 + (x+1)^2(x-1)^3 + (x+1)(x-1)^4 + (x-1)^5 = 0.$
- **3** Let *a* and *b* be two real numbers and let $M(a, b) = \max \{3a^2 + 2b; 3b^2 + 2a\}$. Find the values of *a* and *b* for which M(a, b) is minimal.
- 4 Let *ABC* be a triangle. *F* and *L* are two points on the side [AC] such that AF = LC < AC/2. Find the mesure of the angle $\angle FBL$ knowing that $AB^2 + BC^2 = AL^2 + LC^2$.
- Grade 11 Second Exam

1 Prove that

$$2010 < \frac{2^2+1}{2^2-1} + \frac{3^2+1}{3^2-1} + \ldots + \frac{2010^2+1}{2010^2-1} < 2010 + \frac{1}{2}.$$

2 Compute the sum

$$S = 1 + 2 + 3 - 4 - 5 + 6 + 7 + 8 - 9 - 10 + \dots - 2010$$

where every three consecutive + are followed by two -.

3 Solve in \mathbb{R}^3 the following system

$$\begin{cases} \sqrt{x^2 - y} = z - 1\\ \sqrt{y^2 - z} = x - 1\\ \sqrt{z^2 - x} = y - 1 \end{cases}$$

4 Let ABC be a triangle with area 1 and P the middle of the side [BC]. M and N are two points of $[AB] - \{A, B\}$ and $[AC] - \{A, C\}$ respectively such that AM = 2MB and CN = 2AN. The two lines (AP) and (MN) intersect in a point D. Find the area of the triangle ADN.

_

Grade 11 - Third Exam

2011 Morocco National Olympiad

1	Find the maximum value of the real constant C such that $x^2 + y^2 + 1 \ge C(x+y)$, and $x^2 + y^2 + xy + 1 \ge C(x+y)$ for all reals x, y .
2	Prove that the equation $x^2 + p x = qx - 1$ has 4 distinct real solutions if and only if $p + q + 2 < 0$ (p and q are two real parameters).
3	Find all functions $f : \mathbb{R} \to \mathbb{R}$ which verify the relation
	$(x-2)f(y) + f(y+2f(x)) = f(x+yf(x)), \qquad \forall x, y \in \mathbb{R}.$
4	Let $ABCD$ be a convex quadrilateral with angles $\angle ABC$ and $\angle BCD$ not less than 120°. Prove that AC + BD > AB + BC + CD
_	Grade 11 - Fourth Exam
1	Find all positive integers n such that $: -2^0 + 2^1 - 2^2 + 2^3 - 2^4 + \dots - (-2)^n = 4^0 + 4^1 + 4^2 + \dots + 4^{2010}$
2	One integer was removed from the set $S = \{1, 2, 3,, n\}$ of the integers from 1 to n . The arithmetic mean of the other integers of S is equal to $\frac{163}{4}$. What integer was removed ?
3	When dividing an integer m by a positive integer n , $(0 < n \le 100)$, a student finds $\frac{m}{n} = 0,167a_1a_2$ Prove that the student made a mistake while computing.
4	(C) and (C') are two circles which intersect in A and B . (D) is a line that moves and passes through A , intersecting (C) in P and (C') in P'. Prove that the bisector of $[PP']$ passes through a non-moving point.
-	Grade 11 - Fifth Exam
1	Given positive reals a, b, c ; show that we have
	$\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right) \ge 8.$

2011 Morocco National Olympiad

2 Let α, β, γ be the angles of a triangle *ABC* of perimeter 2p and *R* is the radius of its circumscribed circle. (*a*) Prove that

$$\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma \ge 3\left(9 \cdot \frac{R^2}{p^2} - 1\right).$$

(b) When do we have equality?

- **3** Two circles are tangent to each other internally at a point *T*. Let the chord *AB* of the larger circle be tangent to the smaller circle at a point *P*. Prove that the line *TP* bisects $\angle ATB$.
- 4 The diagonals of a trapezoid *ABCD* whose bases are [*AB*] and [*CD*] intersect at *P*. Prove that

$$S_{PAB} + S_{PCD} > S_{PBC} + S_{PDA},$$

Where S_{XYZ} denotes the area of $\triangle XYZ$.

Grade 12 - First Exam

Day 1

- 1 Let a and b be two positive real numbers such that a + b = ab. Prove that $\frac{a}{b^2+4} + \frac{b}{a^2+4} \ge \frac{1}{2}$.
- 2 Solve in $(\mathbb{R}^*_+)^4$ the following system : $\begin{cases} x+y+z+t=4\\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=5-\frac{1}{xyzt} \end{cases}$
- **3** Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that $\forall x \in \mathbb{R}$ f(x) = max(2xy f(y)) where $y \in \mathbb{R}$.
- 4 Let ABC be a triangle. The inside bisector of the angle $\angle BAC$ cuts [BC] in L and the circle (C) circumsbribed to the triangle ABC in D. The perpendicular to (AC) going through D cuts [AC] in M and the circle (C) in K. Find the value of $\frac{AM}{MC}$ knowing that $\frac{BL}{LC} = \frac{1}{2}$.

Day 2

1 Compute the sum

 $S = 1 + 2 + 3 - 4 - 5 + 6 + 7 + 8 - 9 - 10 + \dots - 2010$

where every three consecutive + are followed by two -.

2 Let a, b, c be three postive real numbers such that a + b + c = 1. Prove that $9abc \le ab + ac + bc < 1/4 + 3abc$.

3

2011 Morocco National Olympiad

4	Let ABC be a triangle with area 1 and P the middle of the side $[BC]$. M and N are two points of $[AB] - \{A, B\}$ and $[AC] - \{A, C\}$ respectively such that $AM = 2MB$ and $CN = 2AN$. The two lines (AP) and (MN) intersect in a point D . Find the area of the triangle ADN .
Day 3	3
1	Find the maximum value of the real constant C such that $x^2 + y^2 + 1 \ge C(x+y)$, and $x^2 + y^2 + xy + 1 \ge C(x+y)$ for all reals x, y .
2	Prove that the equation $x^2 + p x = qx - 1$ has 4 distinct real solutions if and only if $p + q + 2 < 0$ (p and q are two real parameters).
3	Find all functions $f : \mathbb{R} \to \mathbb{R}$ which verify the relation
	$(x-2)f(y) + f(y+2f(x)) = f(x+yf(x)), \qquad \forall x, y \in \mathbb{R}.$

 $xf(x + xy) = xf(x) + f(x^2) \cdot f(y).$

Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

Let ABC be a triangle and I the center of its incircle. P is a point inside ABC such that $\angle PBA +$ 4 $\angle PCA = \angle PBC + \angle PCB$. Prove that $AP \ge AI$ with equality iff P = I.

Day 4		
1	Find all positive integers n such that $: -2^0 + 2^1 - 2^2 + 2^3 - 2^4 + \dots - (-2)^n = 4^0 + 4^1 + 4^2 + \dots + 4^{2010}$	
2	One integer was removed from the set $S = \{1, 2, 3,, n\}$ of the integers from 1 to n . The arithmetic mean of the other integers of S is equal to $\frac{163}{4}$. What integer was removed ?	
3	Problem 3 (MAR CP 1992) : From the digits $1, 2,, 9$, we write all the numbers formed by these nine digits (the nine digits are all distinct), and we order them in increasing order as follows : 123456789 , 123456798 ,, 987654321. What is the $100000th$ number ?	
4	Two circles C_1 and C_2 intersect in A and B. A line passing through B intersects C_1 in C and C_2 in D. Another line passing through B intersects C_1 in E and C_2 in F, (CF) intersects C_1 and C_2	

in P and Q respectively. Make sure that in your diagram, $B, E, C, A, P \in C_1$ and $B, D, F, A, Q \in$

4

2011 Morocco National Olympiad

 C_2 in this order. Let M and N be the middles of the arcs BP and BQ respectively. Prove that if CD = EF, then the points C, F, M, N are cocylic in this order.

Day	5
1	Let x, y, and z be three real positive numbers such that $x^2 + y^2 + z^2 + 2xyz = 1$. Prove that $2(x + y + z) \le 3$.
2	Let α, β, γ be the angles of a triangle ABC of perimeter $2p$ and R is the radius of its circumscribed circle. (a) Prove that
	$\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma \ge 3\left(9 \cdot \frac{R^2}{p^2} - 1\right).$
	(b) When do we have equality?
3	Prove that there exist two functions $f, g: \mathbb{R} \to \mathbb{R}$, such that $f \circ g$ is strictly decreasing and $g \circ f$ is strictly increasing.
	(Poland) Andrzej Komisarski and Marcin Kuczma

4 Let a, b, c, d, m, n be positive integers such that $a^2 + b^2 + c^2 + d^2 = 1989$, $n^2 = max \{a, b, c, d\}$ and $a + b + c + d = m^2$. Find the values of m and n.

AoPS Online (AoPS Academy AoPS & AoP