Art of Problem Solving

## AoPS Community

## Morocco National Olympiad 2011

www.artofproblemsolving.com/community/c4105
by momo1729, Potla, Agung, mavropnevma

- $\quad$ Grade 11 - First Exam

1 Solve the following equation in $\mathbb{R}^{+}$:

$$
\left\{\begin{array}{c}
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2010 \\
x+y+z=\frac{3}{670}
\end{array}\right.
$$

2 Solve in $\mathbb{R}$ the equation: $(x+1)^{5}+(x+1)^{4}(x-1)+(x+1)^{3}(x-1)^{2}+(x+1)^{2}(x-1)^{3}+(x+$ 1) $(x-1)^{4}+(x-1)^{5}=0$.
$3 \quad$ Let $a$ and $b$ be two real numbers and let $M(a, b)=\max \left\{3 a^{2}+2 b ; 3 b^{2}+2 a\right\}$. Find the values of $a$ and $b$ for which $M(a, b)$ is minimal.

4 Let $A B C$ be a triangle. $F$ and $L$ are two points on the side $[A C]$ such that $A F=L C<A C / 2$. Find the mesure of the angle $\angle F B L$ knowing that $A B^{2}+B C^{2}=A L^{2}+L C^{2}$.

- $\quad$ Grade 11 - Second Exam

1 Prove that

$$
2010<\frac{2^{2}+1}{2^{2}-1}+\frac{3^{2}+1}{3^{2}-1}+\ldots+\frac{2010^{2}+1}{2010^{2}-1}<2010+\frac{1}{2} .
$$

2 Compute the sum

$$
S=1+2+3-4-5+6+7+8-9-10+\cdots-2010
$$

where every three consecutive + are followed by two - .
3 Solve in $\mathbb{R}^{3}$ the following system

$$
\left\{\begin{aligned}
\sqrt{x^{2}-y} & =z-1 \\
\sqrt{y^{2}-z} & =x-1 \\
\sqrt{z^{2}-x} & =y-1
\end{aligned}\right.
$$

$4 \quad$ Let $A B C$ be a triangle with area 1 and $P$ the middle of the side $[B C] . M$ and $N$ are two points of $[A B]-\{A, B\}$ and $[A C]-\{A, C\}$ respectively such that $A M=2 M B$ and $C N=2 A N$. The two lines $(A P)$ and $(M N)$ intersect in a point $D$. Find the area of the triangle $A D N$.

## - $\quad$ Grade 11 - Third Exam

1 Find the maximum value of the real constant $C$ such that $x^{2}+y^{2}+1 \geq C(x+y)$, and $x^{2}+y^{2}+$ $x y+1 \geq C(x+y)$ for all reals $x, y$.

2 Prove that the equation $x^{2}+p|x|=q x-1$ has 4 distinct real solutions if and only if $p+|q|+2<0$ ( $p$ and $q$ are two real parameters).

3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which verify the relation

$$
(x-2) f(y)+f(y+2 f(x))=f(x+y f(x)), \quad \forall x, y \in \mathbb{R}
$$

4 Let $A B C D$ be a convex quadrilateral with angles $\angle A B C$ and $\angle B C D$ not less than $120^{\circ}$. Prove that

$$
A C+B D>A B+B C+C D
$$

## - $\quad$ Grade 11 - Fourth Exam

1 Find all positive integers n such that : $-2^{0}+2^{1}-2^{2}+2^{3}-2^{4}+\ldots-(-2)^{n}=4^{0}+4^{1}+4^{2}+\ldots+4^{2010}$

2 One integer was removed from the set $S=\{1,2,3, \ldots, n\}$ of the integers from 1 to $n$. The arithmetic mean of the other integers of $S$ is equal to $\frac{163}{4}$.
What integer was removed ?
3 When dividing an integer $m$ by a positive integer $n,(0<n \leq 100)$, a student finds $\frac{m}{n}=$ $0,167 a_{1} a_{2} \ldots$
Prove that the student made a mistake while computing.
$4 \quad(C)$ and $\left(C^{\prime}\right)$ are two circles which intersect in $A$ and $B .(D)$ is a line that moves and passes through $A$, intersecting $(C)$ in P and $\left(C^{\prime}\right)$ in $\mathrm{P}^{\prime}$.
Prove that the bisector of $\left[P P^{\prime}\right]$ passes through a non-moving point.

## - $\quad$ Grade 11 - Fifth Exam

1 Given positive reals $a, b, c$; show that we have

$$
\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right) \geq 8
$$

## AoPS Community

2 Let $\alpha, \beta, \gamma$ be the angles of a triangle $A B C$ of perimeter $2 p$ and $R$ is the radius of its circumscribed circle. (a) Prove that

$$
\cot ^{2} \alpha+\cot ^{2} \beta+\cot ^{2} \gamma \geq 3\left(9 \cdot \frac{R^{2}}{p^{2}}-1\right)
$$

(b) When do we have equality?

3 Two circles are tangent to each other internally at a point $T$. Let the chord $A B$ of the larger circle be tangent to the smaller circle at a point $P$. Prove that the line $T P$ bisects $\angle A T B$.

4 The diagonals of a trapezoid $A B C D$ whose bases are $[A B]$ and $[C D]$ intersect at $P$. Prove that

$$
S_{P A B}+S_{P C D}>S_{P B C}+S_{P D A}
$$

Where $S_{X Y Z}$ denotes the area of $\triangle X Y Z$.

## - Grade 12 - First Exam

## Day 1

1 Let $a$ and $b$ be two positive real numbers such that $a+b=a b$.
Prove that $\frac{a}{b^{2}+4}+\frac{b}{a^{2}+4} \geq \frac{1}{2}$.
2 Solve in $\left(\mathbb{R}_{+}^{*}\right)^{4}$ the following system : $\left\{\begin{array}{c}x+y+z+t=4 \\ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=5-\frac{1}{x y z t}\end{array}\right.$
$3 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x \in \mathbb{R} f(x)=\max (2 x y-f(y))$ where $y \in \mathbb{R}$.
4 Let $A B C$ be a triangle. The inside bisector of the angle $\angle B A C$ cuts $[B C]$ in $L$ and the circle $(C)$ circumsbribed to the triangle $A B C$ in $D$. The perpendicular to $(A C)$ going through $D$ cuts $[A C]$ in $M$ and the circle $(C)$ in $K$. Find the value of $\frac{A M}{M C}$ knowing that $\frac{B L}{L C}=\frac{1}{2}$.

## Day 2

1 Compute the sum

$$
S=1+2+3-4-5+6+7+8-9-10+\cdots-2010
$$

where every three consecutive + are followed by two - .
2 Let $a, b, c$ be three postive real numbers such that $a+b+c=1$.
Prove that $9 a b c \leq a b+a c+b c<1 / 4+3 a b c$.

## AoPS Community

3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y, \in \mathbb{R}$,

$$
x f(x+x y)=x f(x)+f\left(x^{2}\right) \cdot f(y) .
$$

$4 \quad$ Let $A B C$ be a triangle with area 1 and $P$ the middle of the side $[B C] . M$ and $N$ are two points of $[A B]-\{A, B\}$ and $[A C]-\{A, C\}$ respectively such that $A M=2 M B$ and $C N=2 A N$. The two lines $(A P)$ and $(M N)$ intersect in a point $D$. Find the area of the triangle $A D N$.

## Day 3

1 Find the maximum value of the real constant $C$ such that $x^{2}+y^{2}+1 \geq C(x+y)$, and $x^{2}+y^{2}+$ $x y+1 \geq C(x+y)$ for all reals $x, y$.

2 Prove that the equation $x^{2}+p|x|=q x-1$ has 4 distinct real solutions if and only if $p+|q|+2<0$ ( $p$ and $q$ are two real parameters).

3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which verify the relation

$$
(x-2) f(y)+f(y+2 f(x))=f(x+y f(x)), \quad \forall x, y \in \mathbb{R}
$$

$4 \quad$ Let $A B C$ be a triangle and $I$ the center of its incircle. $P$ is a point inside $A B C$ such that $\angle P B A+$ $\angle P C A=\angle P B C+\angle P C B$. Prove that $A P \geq A I$ with equality iff $P=I$.

## Day 4

1 Find all positive integers n such that : $-2^{0}+2^{1}-2^{2}+2^{3}-2^{4}+\ldots-(-2)^{n}=4^{0}+4^{1}+4^{2}+\ldots+4^{2010}$

2 One integer was removed from the set $S=\{1,2,3, \ldots, n\}$ of the integers from 1 to $n$. The arithmetic mean of the other integers of $S$ is equal to $\frac{163}{4}$.
What integer was removed ?
3 Problem 3 (MAR CP 1992) :
From the digits $1,2, \ldots, 9$, we write all the numbers formed by these nine digits (the nine digits are all distinct), and we order them in increasing order as follows : 123456789, 123456798, ..., 987654321 . What is the 100000th number?

4 Two circles $C_{1}$ and $C_{2}$ intersect in $A$ and $B$. A line passing through $B$ intersects $C_{1}$ in $C$ and $C_{2}$ in $D$. Another line passing through $B$ intersects $C_{1}$ in $E$ and $C_{2}$ in $F,(C F)$ intersects $C_{1}$ and $C_{2}$ in $P$ and $Q$ respectively. Make sure that in your diagram, $B, E, C, A, P \in C_{1}$ and $B, D, F, A, Q \in$
$C_{2}$ in this order. Let $M$ and $N$ be the middles of the arcs $B P$ and $B Q$ respectively. Prove that if $C D=E F$, then the points $C, F, M, N$ are cocylic in this order.

## Day 5

1 Let $x, y$, and $z$ be three real positive numbers such that $x^{2}+y^{2}+z^{2}+2 x y z=1$.
Prove that $2(x+y+z) \leq 3$.
2 Let $\alpha, \beta, \gamma$ be the angles of a triangle $A B C$ of perimeter $2 p$ and $R$ is the radius of its circumscribed circle. (a) Prove that

$$
\cot ^{2} \alpha+\cot ^{2} \beta+\cot ^{2} \gamma \geq 3\left(9 \cdot \frac{R^{2}}{p^{2}}-1\right)
$$

(b) When do we have equality?

3 Prove that there exist two functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, such that $f \circ g$ is strictly decreasing and $g \circ f$ is strictly increasing.
(Poland) Andrzej Komisarski and Marcin Kuczma
4 Let $a, b, c, d, m, n$ be positive integers such that $a^{2}+b^{2}+c^{2}+d^{2}=1989, n^{2}=\max \{a, b, c, d\}$ and $a+b+c+d=m^{2}$.
Find the values of $m$ and $n$.

