APMO 1991

www.artofproblemsolving.com/community/c4108
by shobber

1 Let G be the centroid of a triangle $A B C$, and M be the midpoint of $B C$. Let X be on $A B$ and Y on $A C$ such that the points X, Y, and G are collinear and $X Y$ and $B C$ are parallel. Suppose that $X C$ and $G B$ intersect at Q and $Y B$ and $G C$ intersect at P. Show that triangle $M P Q$ is similar to triangle $A B C$.

2 Suppose there are 997 points given in a plane. If every two points are joined by a line segment with its midpoint coloured in red, show that there are at least 1991 red points in the plane. Can you find a special case with exactly 1991 red points?

3 Let $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+$ $\cdots+b_{n}$. Show that

$$
\frac{a_{1}^{2}}{a_{1}+b_{1}}+\frac{a_{2}^{2}}{a_{2}+b_{2}}+\cdots+\frac{a_{n}^{2}}{a_{n}+b_{n}} \geq \frac{a_{1}+a_{2}+\cdots+a_{n}}{2}
$$

4 During a break, n children at school sit in a circle around their teacher to play a game. The teacher walks clockwise close to the children and hands out candies to some of them according to the following rule:

He selects one child and gives him a candy, then he skips the next child and gives a candy to the next one, then he skips 2 and gives a candy to the next one, then he skips 3 , and so on.

Determine the values of n for which eventually, perhaps after many rounds, all children will have at least one candy each.

5 Given are two tangent circles and a point P on their common tangent perpendicular to the lines joining their centres. Construct with ruler and compass all the circles that are tangent to these two circles and pass through the point P.

