

AoPS Community

1994 APMO

APMO 1994

www.artofproblemsolving.com/community/c4111 by shobber

1	Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that (i) For all $x, y \in \mathbb{R}$, $f(x) + f(y) + 1 \ge f(x + y) \ge f(x) + f(y)$			$0 \ge f(x) + f(y)$
	(ii) For all $x \in [0, 1)$, $f(0) \ge f(x)$, (iii) $-f(-1) = f(1) = 1$.			
	Find all such functions f .			
2	Given a nondegenerate triangle R , prove that $ OH < 3R$.	ABC, v	with circumce	entre O , orthocentre H , and circumradius
3	Let <i>n</i> be an integer of the form $a^2 + b^2$, where <i>a</i> and <i>b</i> are relatively prime integers and such that if <i>p</i> is a prime, $p \le \sqrt{n}$, then <i>p</i> divides <i>ab</i> . Determine all such <i>n</i> .			
4	Is there an infinite set of points in the plane such that no three points are collinear, and the distance between any two points is rational?			
5	You are given three lists A , B , and C . List A contains the numbers of the form 10^k in base 10, with k any integer greater than or equal to 1. Lists B and C contain the same numbers translated into base 2 and 5 respectively:			
		$egin{array}{c} A \\ 10 \\ 100 \\ 1000 \end{array}$	B 1010 1100100 1111101000	C 20 400 13000

Prove that for every integer n > 1, there is exactly one number in exactly one of the lists B or C that has exactly n digits.

: : :

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬