APMO 1996

www.artofproblemsolving.com/community/c4113
by shobber, rem, Arne

1 Let $A B C D$ be a quadrilateral $A B=B C=C D=D A$. Let $M N$ and $P Q$ be two segments perpendicular to the diagonal $B D$ and such that the distance between them is $d>\frac{B D}{2}$, with $M \in A D, N \in D C, P \in A B$, and $Q \in B C$. Show that the perimeter of hexagon $A M N C Q P$ does not depend on the position of $M N$ and $P Q$ so long as the distance between them remains constant.

2 Let m and n be positive integers such that $n \leq m$. Prove that

$$
2^{n} n!\leq \frac{(m+n)!}{(m-n)!} \leq\left(m^{2}+m\right)^{n}
$$

3 If $A B C D$ is a cyclic quadrilateral, then prove that the incenters of the triangles $A B C, B C D$, $C D A, D A B$ are the vertices of a rectangle.

4 The National Marriage Council wishes to invite n couples to form 17 discussion groups under the following conditions:
(1) All members of a group must be of the same sex; i.e. they are either all male or all female.
(2) The difference in the size of any two groups is 0 or 1 .
(3) All groups have at least 1 member.
(4) Each person must belong to one and only one group.

Find all values of $n, n \leq 1996$, for which this is possible. Justify your answer.
5 Let a, b, c be the lengths of the sides of a triangle. Prove that

$$
\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b} \leq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

and determine when equality occurs.

