AoPS Community

APMO 1998

www.artofproblemsolving.com/community/c4115
by shobber

1 Let F be the set of all n-tuples $\left(A_{1}, \ldots, A_{n}\right)$ such that each A_{i} is a subset of $\{1,2, \ldots, 1998\}$. Let $|A|$ denote the number of elements of the set A. Find

$$
\sum_{\left(A_{1}, \ldots, A_{n}\right) \in F}\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|
$$

2 Show that for any positive integers a and $b,(36 a+b)(a+36 b)$ cannot be a power of 2 .
3 Let a, b, c be positive real numbers. Prove that

$$
\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right) \geq 2\left(1+\frac{a+b+c}{\sqrt[3]{a b c}}\right)
$$

$4 \quad$ Let $A B C$ be a triangle and D the foot of the altitude from A. Let E and F lie on a line passing through D such that $A E$ is perpendicular to $B E, A F$ is perpendicular to $C F$, and E and F are different from D. Let M and N be the midpoints of the segments $B C$ and $E F$, respectively. Prove that $A N$ is perpendicular to $N M$.
$5 \quad$ Find the largest integer n such that n is divisible by all positive integers less than $\sqrt[3]{n}$.

